Ahmed Hoda, Woo Moohyun, Dumaresq Nicolas, Trevino Lara Pablo, Fong Richie, Lee Sang-Jun, Lazaris Gregory, Mubarak Nauman, Brodusch Nicolas, Seo Dong-Hwa, Gauvin Raynald, Demopoulos George P, Lee Jinhyuk
Department of Mining and Materials Engineering, McGill University, Montréal, QC, Canada.
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
Nat Commun. 2025 Jul 1;16(1):5806. doi: 10.1038/s41467-025-60946-4.
Disordered rock-salt oxides and oxyfluorides are promising positive electrode materials for high-performance lithium-ion batteries free of nickel and cobalt. However, conventional synthesis methods rely on post-synthesis pulverization to achieve cycling-appropriate particle sizes, offering limited control over particle microstructure and crystallinity. This accelerates degradation and complicates secondary particle processing. Here we present a synthesis strategy that enhances nucleation while suppressing particle growth and agglomeration across various disordered rock-salt compositions, including lithium-manganese-titanium oxide, lithium-manganese-niobium oxide, and lithium-nickel-titanium oxide systems. Applied to LiMnTiO, this method yields highly crystalline, well-dispersed sub-200 nm particles that form homogeneous electrode films with stable cycling behavior. Tested in cells with lithium metal as the counter electrode, these electrodes deliver ~200 mAh/g with 85% capacity retention relative to the first cycle after 100 cycles (20 mA/g, 1.5-4.8 V), and an average discharge voltage loss of 4.8 mV per cycle, compared to 38.6% retention and 7.5 mV loss per cycle for electrodes derived from pulverized solid-state particles. This approach suggests a route to enhance the performance and durability of disordered rock-salt electrodes for sustainable lithium-ion batteries.
无序岩盐氧化物和氧氟化物是有望用于高性能无镍钴锂离子电池的正极材料。然而,传统的合成方法依赖于合成后粉碎来获得适合循环的粒径,对颗粒微观结构和结晶度的控制有限。这加速了降解并使二次颗粒加工复杂化。在此,我们提出一种合成策略,该策略可在各种无序岩盐组成中增强成核作用,同时抑制颗粒生长和团聚,这些组成包括锂锰钛氧化物、锂锰铌氧化物和锂镍钛氧化物体系。将该方法应用于LiMnTiO时,可得到高度结晶、分散良好的亚200纳米颗粒,这些颗粒形成具有稳定循环行为的均匀电极膜。在以锂金属为对电极的电池中进行测试时,这些电极在100次循环(20 mA/g,1.5 - 4.8 V)后,相对于首次循环具有85%的容量保持率,平均每次循环的放电电压损失为4.8 mV,相比之下,由粉碎的固态颗粒制成的电极容量保持率为38.6%,每次循环的电压损失为7.5 mV。这种方法为提高无序岩盐电极在可持续锂离子电池中的性能和耐久性提供了一条途径。