Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus, Denmark.
Phys Chem Chem Phys. 2019 Feb 20;21(8):4295-4305. doi: 10.1039/c8cp07648k.
The thermal stability of the p-type Mg2.985Ag0.015Sb2 material with reported good thermoelectric performance is systematically investigated using powder X-ray diffraction (PXRD). Rietveld refinements were performed to extract the quantitative compositional and structural information from PXRD data. For both densified bulk samples and powdered samples of Mg2.985Ag0.015Sb2 studied under vacuum, a secondary phase, Sb, appears upon the first heating process at temperatures above 500 K, but the amount of the Sb phase stabilizes in subsequent thermal cycles. This is consistent with the good repeatability of the electrical resistivity data after the first cycle measurement, and it indicates that the appearance of the Sb phase does not result in structural decomposition or degradation of the thermoelectric properties. To investigate the effect of the Mg vacancy concentration on the formation of the secondary Sb phase, Mg3.5-xAgxSb2 (x = 0 and 0.015) samples with nominal excess Mg were synthesized and characterized. Compared with Mg2.985Ag0.015Sb2, it is found that Mg3.5-xAgxSb2 (x = 0.015) shows no Sb phase appearing for the bulk sample after heat treatment, and only a small amount of Sb emerges in the powdered sample. This reveals that decreasing the Mg deficiency is beneficial for reducing the amount of emerging Sb secondary phase. In addition, there is less Sb appearing in the Ag-doped powder sample of Mg3.5-xAgxSb2 (x = 0.015) than the undoped Mg3.5Sb2 powder sample, indicating that Ag doping at the Mg sites can inhibit the appearance of the Sb phase to some extent. Our work implies that the emergence of the Sb phase is unlikely due to the decomposition of the Mg3Sb2 structure and can be hindered by reducing the Mg deficiency or Ag doping on the Mg sites.
采用粉末 X 射线衍射(PXRD)系统地研究了具有良好热电性能的 p 型 Mg2.985Ag0.015Sb2 材料的热稳定性。进行了 Rietveld 精修,以从 PXRD 数据中提取定量的组成和结构信息。对于在真空中研究的致密块状样品和 Mg2.985Ag0.015Sb2 的粉末样品,在 500 K 以上的第一次加热过程中,出现了第二相 Sb,但 Sb 相的量在随后的热循环中稳定下来。这与第一次循环测量后的电阻率数据的良好重复性一致,表明 Sb 相的出现不会导致结构分解或热电性能下降。为了研究 Mg 空位浓度对形成第二相 Sb 的影响,合成并表征了具有名义过量 Mg 的 Mg3.5-xAgxSb2(x = 0 和 0.015)样品。与 Mg2.985Ag0.015Sb2 相比,发现 Mg3.5-xAgxSb2(x = 0.015)在块状样品热处理后没有 Sb 相出现,只有少量 Sb 在粉末样品中出现。这表明减少 Mg 缺乏有利于减少出现的 Sb 第二相的量。此外,在掺杂 Ag 的 Mg3.5-xAgxSb2(x = 0.015)粉末样品中,出现的 Sb 少于未掺杂的 Mg3.5Sb2 粉末样品,表明在 Mg 位掺杂 Ag 可以在一定程度上抑制 Sb 相的出现。我们的工作表明,Sb 相的出现不太可能是由于 Mg3Sb2 结构的分解引起的,可以通过减少 Mg 缺乏或在 Mg 位掺杂 Ag 来抑制 Sb 相的出现。