a Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport , University of Porto (FADE-UP) , Porto , Portugal.
b Porto Biomechanics Laboratory (LABIOMEP) , University of Porto , Porto , Portugal.
J Sports Sci. 2019 Jul;37(13):1512-1520. doi: 10.1080/02640414.2019.1574949. Epub 2019 Feb 6.
We aimed to compare multilayer perceptron (MLP) neural networks, radial basis function neural networks (RBF) and linear models (LM) accuracy to predict the centre of mass (CM) horizontal speed at low-moderate, heavy and severe swimming intensities using physiological and biomechanical dataset. Ten trained male swimmers completed a 7 × 200 m front crawl protocol (0.05 m.s increments and 30 s intervals) to assess expiratory gases and blood lactate concentrations. Two surface and four underwater cameras recorded independent images subsequently processed focusing a three-dimensional reconstruction of two upper limb cycles at 25 and 175 m laps. Eight physiological and 13 biomechanical variables were inputted to predict CM horizontal speed. MLP, RBF and LM were implemented with the Levenberg-Marquardt algorithm (feed forward with a six-neuron hidden layer), orthogonal least squares algorithm and decomposition of matrices. MLP revealed higher prediction error than LM at low-moderate intensity (2.43 ± 1.44 and 1.67 ± 0.60%), MLP and RBF depicted lower mean absolute percentage errors than LM at heavy intensity (2.45 ± 1.61, 1.82 ± 0.92 and 3.72 ± 1.67%) and RBF neural networks registered lower errors than MLP and LM at severe intensity (2.78 ± 0.96, 3.89 ± 1.78 and 4.47 ± 2.36%). Artificial neural networks are suitable for speed model-fit at heavy and severe swimming intensities when considering physiological and biomechanical background.
我们旨在比较多层感知器(MLP)神经网络、径向基函数神经网络(RBF)和线性模型(LM)的准确性,以使用生理和生物力学数据集预测低中度、重度和严重游泳强度下的质心(CM)水平速度。十名经过训练的男性游泳运动员完成了 7×200 米自由泳协议(0.05 m·s 递增和 30 秒间隔),以评估呼气气体和血液乳酸浓度。两个表面和四个水下摄像机记录了独立的图像,随后处理这些图像,重点是在 25 和 175 米泳道上对两个上肢周期进行三维重建。将 8 个生理变量和 13 个生物力学变量输入到预测 CM 水平速度中。MLP、RBF 和 LM 分别采用 Levenberg-Marquardt 算法(前馈,带有六个神经元的隐藏层)、正交最小二乘法算法和矩阵分解来实现。在低中度强度下,MLP 的预测误差高于 LM(2.43±1.44 和 1.67±0.60%),在重度强度下,MLP 和 RBF 的平均绝对百分比误差低于 LM(2.45±1.61、1.82±0.92 和 3.72±1.67%),在重度强度下,RBF 神经网络的误差低于 MLP 和 LM(2.78±0.96、3.89±1.78 和 4.47±2.36%)。当考虑生理和生物力学背景时,人工神经网络适合于在重度和严重游泳强度下进行速度模型拟合。