Suppr超能文献

通过空间分辨反常色散精修研究固氮酶铁钼辅基。

Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement.

作者信息

Spatzal Thomas, Schlesier Julia, Burger Eva-Maria, Sippel Daniel, Zhang Limei, Andrade Susana L A, Rees Douglas C, Einsle Oliver

机构信息

Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.

Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Nat Commun. 2016 Mar 14;7:10902. doi: 10.1038/ncomms10902.

Abstract

The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S=3/2 state the common iron oxidation state assignments must be reconsidered. By a spatially resolved refinement of the anomalous scattering contributions of the 7 Fe atoms of FeMoco, we conclude that three irons (Fe1/3/7) are more reduced than the other four (Fe2/4/5/6). Our data are in agreement with the recently revised oxidation state assignment for the molybdenum ion, providing the first spatially resolved picture of the resting-state electron distribution within FeMoco. This might provide the long-sought experimental basis for a generally accepted theoretical description of the cluster that is in line with available spectroscopic and functional data.

摘要

固氮酶的[Mo:7Fe:9S:C]铁钼辅因子(FeMoco)是已知最大的金属簇,在生物固氮过程中催化将二氮六电子还原为铵。直到最近其原子结构才得以阐明,但其反应活性和电子结构仍存在争议。在此我们表明,对于其基态S = 3/2状态,必须重新考虑常见的铁氧化态分配。通过对FeMoco的7个铁原子的反常散射贡献进行空间分辨精修,我们得出三个铁原子(Fe1/3/7)的还原程度高于其他四个(Fe2/4/5/6)。我们的数据与最近修订的钼离子氧化态分配一致,提供了FeMoco基态电子分布的首张空间分辨图像。这可能为与现有光谱和功能数据相符的该簇普遍接受的理论描述提供长期寻求的实验基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb85/4793075/7b426980b72e/ncomms10902-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验