Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore; Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK; Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland.
Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648, Singapore, Singapore.
Cell Rep. 2019 Feb 5;26(6):1627-1640.e7. doi: 10.1016/j.celrep.2019.01.041.
The molecular characterization of immune subsets is important for designing effective strategies to understand and treat diseases. We characterized 29 immune cell types within the peripheral blood mononuclear cell (PBMC) fraction of healthy donors using RNA-seq (RNA sequencing) and flow cytometry. Our dataset was used, first, to identify sets of genes that are specific, are co-expressed, and have housekeeping roles across the 29 cell types. Then, we examined differences in mRNA heterogeneity and mRNA abundance revealing cell type specificity. Last, we performed absolute deconvolution on a suitable set of immune cell types using transcriptomics signatures normalized by mRNA abundance. Absolute deconvolution is ready to use for PBMC transcriptomic data using our Shiny app (https://github.com/giannimonaco/ABIS). We benchmarked different deconvolution and normalization methods and validated the resources in independent cohorts. Our work has research, clinical, and diagnostic value by making it possible to effectively associate observations in bulk transcriptomics data to specific immune subsets.
免疫亚群的分子特征对于设计有效的策略来理解和治疗疾病非常重要。我们使用 RNA 测序 (RNA-seq) 和流式细胞术对健康供体的外周血单核细胞 (PBMC) 部分中的 29 种免疫细胞类型进行了特征描述。我们的数据集首先用于识别在 29 种细胞类型中具有特异性、共表达和管家作用的基因集。然后,我们检查了 mRNA 异质性和 mRNA 丰度的差异,揭示了细胞类型特异性。最后,我们使用通过 mRNA 丰度归一化的转录组学特征对一组合适的免疫细胞类型进行绝对反卷积。绝对反卷积已经准备好使用我们的 Shiny 应用程序 (https://github.com/giannimonaco/ABIS) 用于 PBMC 转录组学数据。我们对不同的反卷积和归一化方法进行了基准测试,并在独立队列中验证了这些资源。我们的工作具有研究、临床和诊断价值,因为它可以有效地将批量转录组学数据中的观察结果与特定的免疫亚群联系起来。