Suppr超能文献

Miso:一个用于多种同位素标记辅助代谢组学数据分析的 R 包。

Miso: an R package for multiple isotope labeling assisted metabolomics data analysis.

机构信息

Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel.

Department of Analytical chemistry, Israel Institute for Biological Research, Ness Ziona, Israel.

出版信息

Bioinformatics. 2019 Sep 15;35(18):3524-3526. doi: 10.1093/bioinformatics/btz092.

Abstract

MOTIVATION

The use of stable isotope labeling is highly advantageous for structure elucidation in metabolomics studies. However, computational tools dealing with multiple-precursor-based labeling studies are still missing. Hence, we developed Miso, an R package providing automated and efficient data analysis workflow to detect the complete repertoire of labeled molecules from multiple-precursor-based labeling experiments.

RESULTS

The capability of Miso is demonstrated by the analysis of liquid chromatography-mass spectrometry data obtained from duckweed plants fed with one unlabeled and two differently labeled tyrosine (unlabeled tyrosine, tyrosine-2H4 and tyrosine-13C915N1). The resulting data matrix generated by Miso contains sets of unlabeled and labeled ions with their retention time, m/z values and number of labeled atoms that can be directly utilized for database query and biological studies.

AVAILABILITY AND IMPLEMENTATION

Miso is publicly available on the CRAN repository (https://cran.r-project.org/web/packages/Miso). A reproducible case study and a detailed tutorial are available from GitHub (https://github.com/YonghuiDong/Miso_example).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在代谢组学研究中,使用稳定同位素标记具有高度的优势。然而,处理基于多前体标记研究的计算工具仍然缺失。因此,我们开发了 Miso,这是一个 R 包,提供了自动化和高效的数据分析工作流程,用于从基于多前体标记的实验中检测完整的标记分子谱。

结果

Miso 的能力通过分析喂食了一种未标记和两种不同标记的酪氨酸(未标记的酪氨酸、酪氨酸-2H4 和酪氨酸-13C915N1)的浮萍植物的液相色谱-质谱数据得到了证明。Miso 生成的数据矩阵包含未标记和标记离子的集合,它们的保留时间、m/z 值和标记原子的数量可直接用于数据库查询和生物学研究。

可用性和实现

Miso 可在 CRAN 存储库(https://cran.r-project.org/web/packages/Miso)上公开获得。可从 GitHub(https://github.com/YonghuiDong/Miso_example)获得可重现的案例研究和详细的教程。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验