Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany.
German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, D-38124 Braunschweig, Germany.
Bioinformatics. 2019 Sep 1;35(17):3196-3198. doi: 10.1093/bioinformatics/btz005.
Compound identification is one of the most eminent challenges in the untargeted analysis of complex mixtures of small molecules by mass spectrometry. Similarity of tandem mass spectra can provide valuable information on putative structural similarities between known and unknown analytes and hence aids feature identification in the bioanalytical sciences. We have developed CluMSID (Clustering of MS2 spectra for metabolite identification), an R package that enables researchers to make use of tandem mass spectra and neutral loss pattern similarities as a part of their metabolite annotation workflow. CluMSID offers functions for all analysis steps from import of raw data to data mining by unsupervised multivariate methods along with respective (interactive) visualizations. A detailed tutorial with example data is provided as supplementary information.
CluMSID is available as R package from https://github.com/tdepke/CluMSID/and from https://bioconductor.org/packages/CluMSID/.
Supplementary data are available at Bioinformatics online.
在通过质谱对小分子的复杂混合物进行无目标分析时,化合物的鉴定是最突出的挑战之一。串联质谱的相似性可以为已知和未知分析物之间的假定结构相似性提供有价值的信息,因此有助于生物分析科学中的特征鉴定。我们开发了 CluMSID(用于代谢物鉴定的 MS2 谱聚类),这是一个 R 包,使研究人员能够将串联质谱和中性丢失模式的相似性用作其代谢物注释工作流程的一部分。CluMSID 提供了从原始数据导入到通过无监督多元方法进行数据挖掘的所有分析步骤的功能,以及相应的(交互式)可视化。提供了带有示例数据的详细教程作为补充信息。
CluMSID 可作为 R 包从 https://github.com/tdepke/CluMSID/ 和 https://bioconductor.org/packages/CluMSID/ 获取。
补充数据可在 Bioinformatics 在线获得。