Suppr超能文献

RawHummus:一款用于代谢组学中原始数据自动质量控制的R Shiny应用程序。

RawHummus: an R Shiny app for automated raw data quality control in metabolomics.

作者信息

Dong Yonghui, Kazachkova Yana, Gou Meng, Morgan Liat, Wachsman Tal, Gazit Ehud, Birkler Rune Isak Dupont

机构信息

Metabolite Medicine Division, BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel.

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.

出版信息

Bioinformatics. 2022 Mar 28;38(7):2072-2074. doi: 10.1093/bioinformatics/btac040.

Abstract

MOTIVATION

Robust and reproducible data is essential to ensure high-quality analytical results and is particularly important for large-scale metabolomics studies where detector sensitivity drifts, retention time and mass accuracy shifts frequently occur. Therefore, raw data need to be inspected before data processing to detect measurement bias and verify system consistency.

RESULTS

Here, we present RawHummus, an R Shiny app for an automated raw data quality control (QC) in metabolomics studies. It produces a comprehensive QC report, which contains interactive plots and tables, summary statistics and detailed explanations. The versatility and limitations of RawHummus are tested with 13 metabolomics/lipidomics datasets and 1 proteomics dataset obtained from 5 different liquid chromatography mass spectrometry platforms.

AVAILABILITY AND IMPLEMENTATION

RawHummus is released on CRAN repository (https://cran.r-project.org/web/packages/RawHummus), with source code being available on GitHub (https://github.com/YonghuiDong/RawHummus). The web application can be executed locally from the R console using the command 'runGui()'. Alternatively, it can be freely accessed at https://bcdd.shinyapps.io/RawHummus/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

可靠且可重复的数据对于确保高质量的分析结果至关重要,对于大规模代谢组学研究尤为重要,因为在这类研究中经常会出现检测器灵敏度漂移、保留时间和质量精度偏移的情况。因此,在数据处理之前需要检查原始数据,以检测测量偏差并验证系统一致性。

结果

在此,我们展示了RawHummus,这是一个用于代谢组学研究中自动原始数据质量控制(QC)的R Shiny应用程序。它会生成一份全面的QC报告,其中包含交互式图表和表格、汇总统计数据以及详细解释。我们使用从5个不同液相色谱质谱平台获得的13个代谢组学/脂质组学数据集和1个蛋白质组学数据集对RawHummus的通用性和局限性进行了测试。

可用性与实现

RawHummus已发布在CRAN存储库(https://cran.r-project.org/web/packages/RawHummus)上,其源代码可在GitHub(https://github.com/YonghuiDong/RawHummus)上获取。该网络应用程序可以使用命令“runGui()”从R控制台在本地执行。或者,也可以通过https://bcdd.shinyapps.io/RawHummus/免费访问。

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验