Suppr超能文献

脉冲频率适应对平衡网络动力学的影响。

The impact of spike-frequency adaptation on balanced network dynamics.

作者信息

Barranca Victor J, Huang Han, Li Sida

机构信息

Swarthmore College, 500 College Avenue, Swarthmore, PA 19081 USA.

出版信息

Cogn Neurodyn. 2019 Feb;13(1):105-120. doi: 10.1007/s11571-018-9504-2. Epub 2018 Sep 3.

Abstract

A dynamic balance between strong excitatory and inhibitory neuronal inputs is hypothesized to play a pivotal role in information processing in the brain. While there is evidence of the existence of a balanced operating regime in several cortical areas and idealized neuronal network models, it is important for the theory of balanced networks to be reconciled with more physiological neuronal modeling assumptions. In this work, we examine the impact of spike-frequency adaptation, observed widely across neurons in the brain, on balanced dynamics. We incorporate adaptation into binary and integrate-and-fire neuronal network models, analyzing the theoretical effect of adaptation in the large network limit and performing an extensive numerical investigation of the model adaptation parameter space. Our analysis demonstrates that balance is well preserved for moderate adaptation strength even if the entire network exhibits adaptation. In the common physiological case in which only excitatory neurons undergo adaptation, we show that the balanced operating regime in fact widens relative to the non-adaptive case. We hypothesize that spike-frequency adaptation may have been selected through evolution to robustly facilitate balanced dynamics across diverse cognitive operating states.

摘要

据推测,强大的兴奋性和抑制性神经元输入之间的动态平衡在大脑的信息处理中起着关键作用。虽然有证据表明在几个皮质区域和理想化的神经元网络模型中存在平衡的运行机制,但平衡网络理论与更多生理神经元建模假设相协调很重要。在这项工作中,我们研究了在大脑中广泛观察到的 spike - frequency adaptation(尖峰频率适应)对平衡动力学的影响。我们将适应纳入二进制和积分发放神经元网络模型,分析了在大网络极限下适应的理论效应,并对模型适应参数空间进行了广泛的数值研究。我们的分析表明,即使整个网络表现出适应,对于适度的适应强度,平衡仍能很好地保持。在仅兴奋性神经元发生适应的常见生理情况下,我们表明平衡运行机制实际上相对于非适应情况有所拓宽。我们推测,尖峰频率适应可能是通过进化而被选择的,以便在不同的认知运行状态下稳健地促进平衡动力学。

相似文献

1
The impact of spike-frequency adaptation on balanced network dynamics.脉冲频率适应对平衡网络动力学的影响。
Cogn Neurodyn. 2019 Feb;13(1):105-120. doi: 10.1007/s11571-018-9504-2. Epub 2018 Sep 3.
4
Chaotic balanced state in a model of cortical circuits.皮质回路模型中的混沌平衡状态
Neural Comput. 1998 Aug 15;10(6):1321-71. doi: 10.1162/089976698300017214.

引用本文的文献

7
Points and lines inside human brains.人脑内部的点和线。
Cogn Neurodyn. 2019 Oct;13(5):417-428. doi: 10.1007/s11571-019-09539-8. Epub 2019 May 7.

本文引用的文献

3
Efficient codes and balanced networks.高效编码与均衡网络。
Nat Neurosci. 2016 Mar;19(3):375-82. doi: 10.1038/nn.4243.
5
A computational perspective on autism.关于自闭症的计算视角。
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9158-65. doi: 10.1073/pnas.1510583112. Epub 2015 Jul 13.
7
Sparsity and compressed coding in sensory systems.感觉系统中的稀疏性与压缩编码
PLoS Comput Biol. 2014 Aug 21;10(8):e1003793. doi: 10.1371/journal.pcbi.1003793. eCollection 2014 Aug.
8
Equalizing excitation-inhibition ratios across visual cortical neurons.均衡视觉皮层神经元的兴奋-抑制比。
Nature. 2014 Jul 31;511(7511):596-600. doi: 10.1038/nature13321. Epub 2014 Jun 22.
10
Predictive coding of dynamical variables in balanced spiking networks.平衡尖峰网络中动态变量的预测编码。
PLoS Comput Biol. 2013;9(11):e1003258. doi: 10.1371/journal.pcbi.1003258. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验