School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa, 226-8501, Japan.
Appl Microbiol Biotechnol. 2019 Mar;103(6):2609-2619. doi: 10.1007/s00253-019-09663-9. Epub 2019 Feb 7.
L-Cysteine is a commercially important amino acid. Here, we report the construction of L-cysteine-producing Corynebacterium glutamicum using a metabolic engineering approach. L-Serine O-acetyltransferase (SAT), encoded by cysE gene, is a key enzyme of L-cysteine biosynthesis, because of its feedback inhibition by L-cysteine. Therefore, we introduced a mutation into the C. glutamicum cysE gene, which appeared to desensitize SAT against feedback inhibition by L-cysteine. We successfully produced L-cysteine by overexpressing this mutant cysE gene in C. glutamicum, while the wild-type strain scarcely produced L-cysteine. To enhance the biosynthesis of L-serine (a substrate for SAT), a mutant serA gene, encoding D-3-phosphoglycerate dehydrogenase to desensitize it against feedback inhibition by L-serine, was additionally overexpressed in the mutant cysE-overexpressing strain and its L-cysteine production was indeed improved. Moreover, we disrupted the ldh gene encoding L-lactate dehydrogenase and the aecD gene encoding cysteine desulfhydrase to prevent the formation of lactic acid as a by-product and degradation of L-cysteine produced at the stationary phase, respectively, which resulted in enhanced L-cysteine production. However, since the concentration of L-cysteine produced still decreased at the stationary phase despite the aecD disruption, NCgl2463 encoding a possible cystine importer protein was further disrupted to prevent cystine import, because the produced L-cysteine is immediately oxidized to cystine. As a result, the time before the start of the decrease in L-cysteine concentration was successfully prolonged. Approximately 200 mg/L of L-cysteine production was achieved by overexpression of mutant cysE and serA genes and disruption of aecD and NCgl2463 genes in C. glutamicum.
L-半胱氨酸是一种具有重要商业价值的氨基酸。在这里,我们报告了使用代谢工程方法构建产 L-半胱氨酸谷氨酸棒杆菌的过程。L-丝氨酸 O-乙酰基转移酶(SAT)由 cysE 基因编码,是 L-半胱氨酸生物合成的关键酶,因为它受到 L-半胱氨酸的反馈抑制。因此,我们引入了一个突变到 cysE 基因中,使 SAT 对 L-半胱氨酸的反馈抑制脱敏。我们成功地在谷氨酸棒杆菌中过表达了这个突变的 cysE 基因来生产 L-半胱氨酸,而野生型菌株几乎不产生 L-半胱氨酸。为了增强 L-丝氨酸(SAT 的底物)的生物合成,我们还在突变体 cysE 过表达菌株中额外过表达了一个突变的 serA 基因,该基因编码 D-3-磷酸甘油酸脱氢酶,使其对 L-丝氨酸的反馈抑制脱敏,并且其 L-半胱氨酸的产量确实提高了。此外,我们敲除了编码 L-乳酸脱氢酶的 ldh 基因和编码半胱氨酸脱硫酶的 aecD 基因,分别防止了副产物乳酸的形成和在静止期产生的 L-半胱氨酸的降解,从而提高了 L-半胱氨酸的产量。然而,尽管敲除了 aecD,但由于 L-半胱氨酸产量在静止期仍会下降,我们进一步敲除了可能的胱氨酸输入蛋白 NCgl2463 的基因以防止胱氨酸的输入,因为产生的 L-半胱氨酸会立即被氧化为胱氨酸。因此,成功地延长了 L-半胱氨酸浓度开始下降之前的时间。通过在谷氨酸棒杆菌中过表达突变的 cysE 和 serA 基因,敲除 aecD 和 NCgl2463 基因,可实现约 200mg/L 的 L-半胱氨酸产量。