Suppr超能文献

共振-反共振耦合腔垂直腔面发射激光器

Resonant-antiresonant coupled cavity VCSELs.

作者信息

Cook Kevin T, Qiao Pengfei, Qi Jipeng, Coldren Larry A, Chang-Hasnain Connie J

出版信息

Opt Express. 2019 Feb 4;27(3):1798-1807. doi: 10.1364/OE.27.001798.

Abstract

The wavelength tuning range of a tunable vertical-cavity surface-emitting laser (VCSEL) is strongly influenced by the design of the interface between the semiconductor cavity and the air cavity. A simplified model is used to investigate the origin of the dramatic differences in free spectral range (FSR) and tuning slope observed in semiconductor cavity dominant, extended cavity, and air cavity dominant VCSELs. The differences arise from the positioning of the resonant and antiresonant wavelengths of the semiconductor cavity with respect to the center wavelength. The air cavity dominant design is realized by designing an antiresonant semiconductor cavity, resulting in a larger tuning slope near the center of the tuning range and a wider FSR toward the edges of the tuning range. The findings from the simplified model are confirmed with the simulation of a full VCSEL structure. Using an air cavity dominant design, an electrically pumped laser with a tuning range of 68.38 nm centered at 1056.7 nm at a 550 kHz sweep rate is demonstrated with continuous wave emission at room temperature. This epitaxial design rule can be used to increase the tuning range of tunable VCSELs, making them more applicable in swept-source optical coherence tomography and frequency-modulated continuous-wave LIDAR systems.

摘要

可调谐垂直腔面发射激光器(VCSEL)的波长调谐范围受到半导体腔与空气腔之间界面设计的强烈影响。使用一个简化模型来研究在半导体腔主导、扩展腔和空气腔主导的VCSEL中观察到的自由光谱范围(FSR)和调谐斜率的显著差异的起源。这些差异源于半导体腔的谐振和反谐振波长相对于中心波长的位置。通过设计一个反谐振半导体腔来实现空气腔主导的设计,从而在调谐范围中心附近产生更大的调谐斜率,并在调谐范围边缘具有更宽的FSR。简化模型的结果通过完整VCSEL结构的模拟得到了证实。采用空气腔主导设计,展示了一种电泵浦激光器,在室温下以550 kHz的扫描速率,在1056.7 nm中心处的调谐范围为68.38 nm,具有连续波发射。这种外延设计规则可用于增加可调谐VCSEL的调谐范围,使其在扫频源光学相干断层扫描和调频连续波激光雷达系统中更适用。

相似文献

1
Resonant-antiresonant coupled cavity VCSELs.
Opt Express. 2019 Feb 4;27(3):1798-1807. doi: 10.1364/OE.27.001798.
2
High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range.
Electron Lett. 2012 Jul 5;48(14):867-869. doi: 10.1049/el.2012.1552.
3
Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging.
J Lightwave Technol. 2015 Aug 15;33(16):3461-3468. doi: 10.1109/JLT.2015.2397860. Epub 2015 Feb 2.
4
Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs.
Electron Lett. 2012 Oct 11;48(21):1331-1333. doi: 10.1049/el.2012.3180.
5
Tunable single-mode fiber-VCSEL using an intracavity polymer microlens.
Opt Lett. 2007 Oct 1;32(19):2831-3. doi: 10.1364/ol.32.002831.
6
GaSb-based vertical-cavity surface-emitting lasers with an emission wavelength at 3 μm.
Opt Lett. 2016 Jun 15;41(12):2799-802. doi: 10.1364/OL.41.002799.
7
Widely tunable 1060-nm VCSEL with high-contrast grating mirror.
Opt Express. 2017 May 15;25(10):11844-11854. doi: 10.1364/OE.25.011844.
8
Electrically injected VCSEL with a composite DBR and MHCG reflector.
Opt Express. 2019 Mar 4;27(5):7139-7146. doi: 10.1364/OE.27.007139.
9
Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning.
Opt Express. 2008 Sep 1;16(18):14221-6. doi: 10.1364/oe.16.014221.
10
VCSEL-based swept source for low-cost optical coherence tomography.
Biomed Opt Express. 2017 Jan 25;8(2):1110-1121. doi: 10.1364/BOE.8.001110. eCollection 2017 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验