Suppr超能文献

用于胃癌淋巴结转移术前预测的智能临床决策支持系统。

An Intelligent Clinical Decision Support System for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer.

机构信息

Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China.

Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.

出版信息

J Am Coll Radiol. 2019 Jul;16(7):952-960. doi: 10.1016/j.jacr.2018.12.017. Epub 2019 Feb 4.

Abstract

PURPOSE

The aim of this study was to develop and validate a computational clinical decision support system (DSS) on the basis of CT radiomics features for the prediction of lymph node (LN) metastasis in gastric cancer (GC) using machine learning-based analysis.

METHODS

Clinicopathologic and CT imaging data were retrospectively collected from 490 patients who were diagnosed with GC between January 2002 and December 2016. Radiomics features were extracted from venous-phase CT images. Relevant features were selected, ranked, and modeled using a support vector machine classifier in 326 training and validation data sets. A model test was performed independently in a test set (n = 164). Finally, a head-to-head comparison of the diagnostic performance of the DSS and that of the conventional staging criterion was performed.

RESULTS

Two hundred ninety-seven of the 490 patients examined had histopathologic evidence of LN metastasis, yielding a 60.6% metastatic rate. The area under the curve for predicting LN+ was 0.824 (95% confidence interval, 0.804-0.847) for the DSS in the training and validation data and 0.764 (95% confidence interval, 0.699-0.833) in the test data. The calibration plots showed good concordance between the predicted and observed probability of LN+ using the DSS approach. The DSS was better able to predict LN metastasis than the conventional staging criterion in the training and validation data (accuracy 76.4% versus 63.5%) and in the test data (accuracy 71.3% versus 63.2%) CONCLUSIONS: A DSS based on 13 "worrisome" radiomics features appears to be a promising tool for the preoperative prediction of LN status in patients with GC.

摘要

目的

本研究旨在开发和验证一种基于 CT 放射组学特征的计算临床决策支持系统(DSS),以基于机器学习的分析预测胃癌(GC)的淋巴结(LN)转移。

方法

回顾性收集了 2002 年 1 月至 2016 年 12 月期间诊断为 GC 的 490 例患者的临床病理和 CT 影像学数据。从静脉期 CT 图像中提取放射组学特征。使用支持向量机分类器在 326 个训练和验证数据集以及 164 个测试集中选择、排序和建模相关特征。最后,对头对头比较 DSS 和传统分期标准的诊断性能。

结果

在 490 例患者中,有 297 例经病理证实有 LN 转移,转移率为 60.6%。DSS 在训练和验证数据中的预测 LN+的 AUC 为 0.824(95%置信区间,0.804-0.847),在测试数据中的 AUC 为 0.764(95%置信区间,0.699-0.833)。校准图显示,使用 DSS 方法预测 LN+的概率与观察到的概率之间具有良好的一致性。在训练和验证数据(准确率 76.4%对 63.5%)以及测试数据(准确率 71.3%对 63.2%)中,DSS 比传统分期标准更能预测 LN 转移。

结论

基于 13 个“令人担忧”的放射组学特征的 DSS 似乎是一种有前途的工具,可用于预测 GC 患者的 LN 状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验