Department of Neurology, W. Roxbury VA Hospital/Harvard Medical School, W. Roxbury, Massachusetts.
Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
Hippocampus. 2019 Aug;29(8):710-725. doi: 10.1002/hipo.23068. Epub 2019 Feb 7.
Advanced cognitive tasks are encoded in distributed neocortical circuits that span multiple forebrain areas. Nonetheless, synaptic plasticity and neural network theories hypothesize that essential information for performing these tasks is encoded in specific ensembles within these circuits. Relatively simpler subcortical areas contain specific ensembles that encode learning, suggesting that neocortical circuits contain such ensembles. Previously, using localized gene transfer of a constitutively active protein kinase C (PKC), we established that a genetically-modified circuit in rat postrhinal cortex, part of the hippocampal formation, can encode some essential information for performing specific visual shape discriminations. However, these studies did not identify any specific neurons that encode learning; the entire circuit might be required. Here, we show that both learning and recall require fast neurotransmitter release from an identified ensemble within this circuit, the transduced neurons; we blocked fast release from these neurons by coexpressing a Synaptotagmin I siRNA with the constitutively active PKC. During learning or recall, specific signaling pathways required for learning are activated in this ensemble; during learning, calcium/calmodulin-dependent protein kinase II, MAP kinase, and CREB are activated; and, during recall, dendritic protein synthesis and CREB are activated. Using activity-dependent gene imaging, we showed that during learning, activity in this ensemble is required to recruit and activate the circuit. Further, after learning, during image presentation, blocking activity in this ensemble reduces accuracy, even though most of the rest of the circuit is activated. Thus, an identified ensemble within a neocortical circuit encodes essential information for performing an advanced cognitive task.
高级认知任务是在跨越多个前脑区域的分布式新皮质电路中编码的。尽管如此,突触可塑性和神经网络理论假设,执行这些任务的基本信息是在这些电路中的特定集合中编码的。相对较简单的皮质下区域包含特定的集合来编码学习,这表明新皮质电路包含这样的集合。以前,我们使用组成型激活蛋白激酶 C (PKC) 的局部基因转移,证明了大鼠后穹窿皮质中的基因修饰电路(海马结构的一部分)可以编码执行特定视觉形状辨别所需的一些基本信息。然而,这些研究没有确定任何编码学习的特定神经元;整个电路可能是必需的。在这里,我们表明,学习和回忆都需要从该电路中的一个特定集合中的鉴定神经元中快速释放神经递质;我们通过与组成型激活 PKC 共表达突触结合蛋白 I siRNA 来阻断这些神经元的快速释放。在学习或回忆期间,学习所需的特定信号通路被激活;在学习期间,钙/钙调蛋白依赖性蛋白激酶 II、MAP 激酶和 CREB 被激活;而在回忆期间,树突蛋白合成和 CREB 被激活。使用活性依赖性基因成像,我们表明在学习期间,该集合的活动需要招募和激活电路。此外,在学习之后,在图像呈现期间,阻断该集合中的活动会降低准确性,即使大部分其余电路被激活。因此,新皮质电路中的一个鉴定集合编码执行高级认知任务所需的基本信息。