Van der Zee E A, Luiten P G, Disterhoft J F
Dept. of Cell & Molecular Biology, Northwestern University Medical School, Chicago, IL, USA.
Prog Neuropsychopharmacol Biol Psychiatry. 1997 Apr;21(3):531-72. doi: 10.1016/s0278-5846(97)00017-1.
为了在海马体中定位蛋白激酶C(PKC),在20世纪80年代可获得用于原位免疫细胞化学的抗体之前,人们一直使用PKC活性测定、mRNA原位杂交和[3H]佛波酯结合技术。20世纪80年代后期,PKC同工型特异性抗体首次用于在细胞和亚细胞水平上绘制海马体PKC图谱。哺乳动物的海马体包含所有四种钙依赖性PKC同工型,但其(亚)细胞定位具有同工型和物种特异性。
大鼠、小鼠和兔子中海马体依赖性的空间和联想学习会导致动物完成任务24小时后所研究的海马体主要细胞中PKC免疫反应性(ir)增加。在四种钙依赖性PKC亚型中,这种增加对γ同工型具有选择性。与PKCα、β1和β2不同,γ同工型存在于树突棘中(最可能是突触可塑性和信息存储的部位),这可能是同工型选择性的基础。
与完全训练的动物相比,处于训练中途的受试者PKCγ-ir增加水平处于中间。与学习能力强的动物相比,无法学会任务的学习能力差的动物PKCγ-ir增强程度要小得多。
联想学习导致在观察到神经元PKCγ-ir同时增加的那些区域中星形胶质细胞PKCβ2和γ-ir减少。这种减少很可能反映了PKC的下调,使星形胶质细胞能够维持其支持诸如伴随学习和记忆等神经元活动所需的钾缓冲能力。
蛋白质印迹分析表明,PKCγ-ir的增加不是由于PKCγ总量增加、转位或片段PKM的蛋白水解产生。因此,PKCγ-ir的增加必定反映了学习诱导的PKCγ分子构象变化,从而导致抗原位点暴露。
尽管大量海马体锥体细胞在训练后24小时时间点显示出学习诱导的PKCγ-ir增强,但这并不表明这些神经元中的所有突触都被使用,也不表明每个细胞已达到最大PKC信号转导能力。
增强的PKCγ-ir可能反映了一种活化的PKC形式,因为佛波酯对PKC的刺激(在海马体切片和轻度醛固定切片中)模拟了学习后所见的PKCγ-ir增加。
最可能诱导PKCγ-ir改变的神经递质系统是乙酰胆碱和谷氨酸。它们在细胞水平上的作用和相互作用在终止于CA1锥体细胞的示意图电路中进行了描述(图4)。
讨论了PKCγ在学习和记忆中的几种功能作用,并基于一种内源性PKC抑制蛋白提出了一个假设模型,该模型可能解释学习后与PKCγ抗体结合的改变(图6)。
免疫细胞化学方法可以为正在进行的破译学习和记忆的部分细胞和生化机制的尝试做出重大贡献。开发与PKCγ等蛋白质不同位点反应的更特异、特征更明确的抗体将为进一步的免疫细胞化学研究提供必要工具,以帮助揭示复杂的脑功能。