Suppr超能文献

在中性电解液中使用非真空处理的 CIGS 光电阴极和丰富的钴硫化物催化剂提高光电化学制氢性能。

Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst.

机构信息

UCL Institute for Materials Discovery, University College London, Roberts Building, Malet Place, London, WC1E 7JE, UK.

Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.

出版信息

Chem Commun (Camb). 2019 Feb 21;55(17):2465-2468. doi: 10.1039/c8cc09426h.

Abstract

This work reports the novelty of using eco-friendly and cost-effective non-vacuum Electrostatic Spray-Assisted Vapour Deposited Cu(In,Ga)SSe (CIGS) thin films as photocathodes, combined with the earth abundant cobalt sulfide (Co-S) as a catalyst to accelerate the kinetics of photogenerated electron transfer and hydrogen generation for photoelectrochemical water splitting. CdS and ZnO layers were subsequently deposited on top of the selenised CIGS films to increase the charge separation and lower the charge recombination for the photocathodes. In order to improve the lifetime and scalability of the CIGS photocathode and the other cell components, a photoelectrochemical test was conducted in a neutral electrolyte of 0.5 M Na2SO4 under simulated sunlight (AM 1.5G). Both the photocurrent densities and the onset potentials of the photocathodes were significantly improved by the electrodeposition of the low cost and earth-abundant Co-S catalyst, with a photocurrent density as high as 19.1 mA cm-2 at -0.34 V vs. reversible hydrogen electrode (RHE), comparable with and even higher than that of the control photocathode using rare and precious Pt as a catalyst.

摘要

这项工作报道了使用环保且经济高效的非真空静电喷雾辅助气相沉积铜铟镓硒(CIGS)薄膜作为光电阴极的新颖性,结合丰富的地球钴硫化物(Co-S)作为催化剂,以加速光生电子转移的动力学和光电化学水分解的制氢反应。随后在硒化 CIGS 薄膜上沉积了 CdS 和 ZnO 层,以提高电荷分离并降低光电阴极的电荷复合。为了提高 CIGS 光电阴极和其他电池组件的寿命和可扩展性,在模拟太阳光(AM 1.5G)下在中性电解质 0.5 M Na2SO4 中进行了光电化学测试。通过廉价且丰富的 Co-S 催化剂的电沉积,光电阴极的光电流密度和起始电位都得到了显著提高,在相对于可逆氢电极(RHE)为-0.34 V 的情况下,光电流密度高达 19.1 mA cm-2,与使用稀有且珍贵的 Pt 作为催化剂的对照光电阴极相当,甚至更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验