Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater. 2019 Apr;31(14):e1807683. doi: 10.1002/adma.201807683. Epub 2019 Feb 8.
Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real-space spin configuration. Here, two advanced X-ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO] multilayers. First, by using ptychography, a high-resolution diffraction imaging technique, the 2D out-of-plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X-ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth-dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole-dipole interactions together with the external magnetic field play an important role in stabilizing sub-100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X-ray-based approach opens the door for in-depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.
在磁性多层膜中,室温磁性斯格明子被认为是未来自旋电子学应用的信息载体。目前,人们对这些系统中斯格明子稳定机制的详细理解仍然缺乏。为了获得更深入的认识,首先必须确定完整的实空间自旋构型。在这里,我们应用了两种基于磁圆二色性的先进 X 射线技术,来研究[Ta/CoFeB/MgO]多层膜中斯格明子的自旋结构。首先,通过使用相衬衍射成像技术,确定了斯格明子的二维离轴自旋分布,空间分辨率达到 10nm。其次,通过共振弹性 X 射线散射中的圆二色性实验,证明了磁性结构的手性经历了深度相关的演化。这表明斯格明子结构是一个复杂的 3D 结构,而不是整个层堆栈中相同的平面纹理。自旋结构的分析证实了理论预测,即偶极-偶极相互作用以及外加磁场在稳定亚 100nm 直径的斯格明子和斯格明子畴壁的混合结构方面起着重要作用。这种基于 X 射线的综合方法为深入研究磁性斯格明子系统开辟了道路,使得优化的斯格明子异质结构能够被精确地设计。