CAESR, Department of Physics, University of Oxford, The Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.
CAESR, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.
Phys Rev Lett. 2019 Jan 25;122(3):037202. doi: 10.1103/PhysRevLett.122.037202.
Coherent control of individual molecular spins in nanodevices is a pivotal prerequisite for fulfilling the potential promised by molecular spintronics. By applying electric field pulses during time-resolved electron spin resonance measurements, we measure the sensitivity of the spin in several antiferromagnetic molecular nanomagnets to external electric fields. We find a linear electric field dependence of the spin states in Cr_{7}Mn, an antiferromagnetic ring with a ground-state spin of S=1, and in a frustrated Cu_{3} triangle, both with coefficients of about 2 rad s^{-1}/V m^{-1}. Conversely, the antiferromagnetic ring Cr_{7}Ni, isomorphic with Cr_{7}Mn but with S=1/2, does not exhibit a detectable effect. We propose that the spin-electric field coupling may be used for selectively controlling individual molecules embedded in nanodevices.
在纳米器件中实现单个分子自旋的相干控制是实现分子自旋电子学潜在应用的关键前提。通过在时间分辨电子自旋共振测量过程中施加电场脉冲,我们测量了几个反铁磁分子纳米磁体中自旋对外部电场的灵敏度。我们发现 Cr_{7}Mn(一个基态自旋为 S=1 的反铁磁环)和一个受挫的 Cu_{3}三角形中自旋状态具有线性电场依赖性,其系数约为 2 rad s^{-1}/V m^{-1}。相反,具有 S=1/2 的同构 Cr_{7}Ni 反铁磁环则没有表现出可检测到的效应。我们提出,自旋-电场耦合可用于选择性地控制嵌入纳米器件中的单个分子。