Morrillo William T, Cumming Herbert I J, Mattioni Andrea, Staab Jakob K, Chilton Nicholas F
Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Research School of Chemistry, The Australian National University, Canberra 2601, Australia.
J Am Chem Soc. 2024 Sep 18;146(37):25841-25851. doi: 10.1021/jacs.4c09109. Epub 2024 Sep 5.
Current scalable quantum computers require large footprints and complex interconnections due to the design of superconducting qubits. While this architecture is competitive, molecular qubits offer a promising alternative due to their atomic scale and tuneable properties through chemical design. The use of electric fields to precisely, selectively and coherently manipulate molecular spins with resonant pulses has the potential to solve the experimental limitations of current molecular spin manipulation techniques such as electron paramagnetic resonance (EPR) spectroscopy. EPR can only address a macroscopic ensemble of molecules, defeating the inherent benefits of molecule-based quantum information. Hence, numerous experiments have been performed using EPR in combination with electric fields to demonstrate coherent spin manipulation. In this work, we explore the underlying theory of spin-electric coupling in lanthanide molecules, and outline ab initio methods to design molecules with enhanced electric field responses. We show how structural distortions arising from electric fields generate coupling elements in the crystal field Hamiltonian within a Kramers doublet ground state and demonstrate the impact of molecular geometry on this phenomenon. We use perturbation theory to rationalize the magnetic and electric field orientation dependence of the spin-electric coupling. We use pseudo-symmetry point groups to decompose molecular distortions to understand the role that symmetry has on spin-electric coupling. Finally, we present an analytical electric field model of structural perturbations that provides large savings in computational expense and allows for the investigation of experimentally accessible electric field magnitudes which cannot be accessed using common ab initio methods.
由于超导量子比特的设计,当前可扩展的量子计算机需要占用较大空间且具备复杂的互连结构。虽然这种架构具有竞争力,但分子量子比特因其原子尺度以及可通过化学设计进行调节的特性,提供了一种很有前景的替代方案。利用电场通过共振脉冲精确、选择性且相干地操纵分子自旋,有可能解决当前分子自旋操纵技术(如电子顺磁共振(EPR)光谱)的实验局限性。EPR只能处理宏观的分子集合,无法发挥基于分子的量子信息的固有优势。因此,已经进行了许多将EPR与电场相结合的实验,以证明相干自旋操纵。在这项工作中,我们探索了镧系分子中自旋 - 电耦合的基础理论,并概述了从头算方法来设计具有增强电场响应的分子。我们展示了电场引起的结构畸变如何在克莱默斯双重态基态的晶体场哈密顿量中产生耦合元素,并证明了分子几何结构对这一现象的影响。我们使用微扰理论来解释自旋 - 电耦合对磁场和电场取向的依赖性。我们使用伪对称点群来分解分子畸变,以理解对称性在自旋 - 电耦合中所起的作用。最后,我们提出了一种结构微扰的解析电场模型,该模型可大幅节省计算成本,并允许研究使用普通从头算方法无法获得的实验可及电场强度。