Laorenza Daniel W, Mullin Kathleen R, Weiss Leah R, Bayliss Sam L, Deb Pratiti, Awschalom David D, Rondinelli James M, Freedman Danna E
Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
Chem Sci. 2024 Aug 5;15(34):14016-26. doi: 10.1039/d4sc03107e.
The burgeoning field of quantum sensing hinges on the creation and control of quantum bits. To date, the most well-studied quantum sensors are optically active, paramagnetic defects residing in crystalline hosts. We previously developed analogous optically addressable molecules featuring a ground-state spin-triplet centered on a Cr ion with an optical-spin interface. In this work, we evaluate isovalent V and Mo congeners, which offer unique advantages, such as an intrinsic nuclear spin for V or larger spin-orbit coupling for Mo, as optically addressable spin systems. We assess the ground-state spin structure and dynamics for each complex, illustrating that all of these spin-triplet species can be coherently controlled. However, unlike the Cr derivatives, these pseudo-tetrahedral V and Mo complexes exhibit no measurable emission. Coupling absorption spectroscopy with computational predictions, we investigate why these complexes exhibit no detectable photoluminescence. These cumulative results suggest that design of future V complexes should target pseudo-tetrahedral symmetries using bidentate or tridentate ligand scaffolds, ideally with deuterated or fluorinated ligand environments. We also suggest that spin-triplet Mo, and by extension W, complexes may not be suitable candidate optically addressable qubit systems due to their low energy spin-singlet states. By understanding the failures and successes of these systems, we outline additional design features for optically addressable V- or Mo-based molecules to expand the library of tailor-made quantum sensors.
新兴的量子传感领域依赖于量子比特的创建和控制。迄今为止,研究最为深入的量子传感器是存在于晶体基质中的具有光学活性的顺磁缺陷。我们之前开发了类似的光学可寻址分子,其基态自旋三重态以具有光学自旋界面的Cr离子为中心。在这项工作中,我们评估了具有独特优势的等电子V和Mo同系物,例如V的固有核自旋或Mo的更大自旋轨道耦合,作为光学可寻址自旋系统。我们评估了每个配合物的基态自旋结构和动力学,表明所有这些自旋三重态物种都可以被相干控制。然而,与Cr衍生物不同,这些假四面体V和Mo配合物没有可测量的发射。将吸收光谱与计算预测相结合,我们研究了为什么这些配合物没有可检测到的光致发光。这些累积结果表明,未来V配合物的设计应该使用双齿或三齿配体支架来靶向假四面体对称性,理想情况下是具有氘代或氟化配体环境。我们还表明,自旋三重态Mo以及由此扩展的W配合物可能由于其低能量自旋单重态而不是合适的光学可寻址量子比特系统候选物。通过了解这些系统的失败与成功之处,我们概述了基于V或Mo的光学可寻址分子的其他设计特征,以扩展定制量子传感器的库。