Suppr超能文献

基于多相人工神经网络的动态软测量估计真菌生物量。

Estimation of fungal biomass using multiphase artificial neural network based dynamic soft sensor.

机构信息

Department of Instrumentation Engineering, Madras Institute of Technology (MIT) Campus, Anna University Chennai, India.

出版信息

J Microbiol Methods. 2019 Apr;159:5-11. doi: 10.1016/j.mimet.2019.02.002. Epub 2019 Feb 5.

Abstract

Interest in low cost cellulase production has become a major challenge in recent years for biorefineries. Fed-batch fermentation of Trichoderma strains for the production of low cost cellulase is carried out on complex media that has various soluble and insoluble substrates. The lack of direct estimation of biomass in the presence of insoluble substrates is one of the major concerns for controlling bioprocesses in industries. In this paper, a Multiphase Artificial Neural Network (MANN) based dynamic soft sensor is developed to predict the biomass concentration of Trichoderma during fed batch fermentation in the presence of insoluble substrates. The soft sensor has three Nonlinear Auto Regressive with eXogenous input (NARX) models to capture the complete dynamics of lag, log and stationary phases of the microbe. At different phases, a particular neural network model is triggered based on the period of operation. Each NARX model estimates biomass concentration using online measurements such as pH, substrate concentration and agitation speed. The predicted output of the proposed model and single ANN model are compared against real-time biomass sensor data. The results demonstrated indicate that the proposed MANN based soft sensor shows good performance with focus on the dynamic behavior of the bioreactor. Also, the developed model recursively predicts the biomass concentration with acceptable deviation with respect to realistic measurement. The results summarized could offer a new methodology in estimating fungal biomass accurately, thereby increasing the productivity of cellulase in industries.

摘要

近年来,人们对低成本纤维素酶生产产生了浓厚的兴趣,这对生物炼制厂来说是一个重大挑战。在复杂的培养基中进行产低成本纤维素酶的木霉菌株分批补料发酵,该培养基具有各种可溶性和不溶性底物。在存在不溶性底物的情况下,无法直接估计生物质是控制工业生物过程的主要关注点之一。本文开发了一种基于多相人工神经网络(MANN)的动态软传感器,以预测存在不溶性底物时的分批发酵过程中木霉的生物量浓度。该软传感器具有三个非线性自回归与外部输入(NARX)模型,以捕获微生物滞后、对数和稳定期的完整动态。在不同的阶段,根据操作周期触发特定的神经网络模型。每个 NARX 模型都使用在线测量值(如 pH 值、底物浓度和搅拌速度)来估计生物量浓度。将所提出模型和单个 ANN 模型的预测输出与实时生物量传感器数据进行比较。结果表明,所提出的基于 MANN 的软传感器在生物反应器的动态行为方面表现出良好的性能。此外,开发的模型能够以可接受的偏差递归地预测生物量浓度,从而提高工业纤维素酶的生产力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验