Arriagada Francisco, Günther Germán, Nos Jaume, Nonell Santi, Olea-Azar Claudio, Morales Javier
Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
Nanomaterials (Basel). 2019 Feb 6;9(2):214. doi: 10.3390/nano9020214.
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
设计高效、生物相容且易于制备的药物递送载体是医学和制药科学领域备受关注的课题。为实现上述目标,表面功能化至关重要。在此,我们报道一种由核壳二氧化硅纳米球和连接在表面的抗氧化剂咖啡酸组成的混合纳米载体,以评估其体外抗氧化能力、保护纳米颗粒中氧化敏感化合物的能力,并研究其与牛血清白蛋白的相互作用。结果表明,固定在二氧化硅纳米球中的咖啡酸的自由基清除活性减弱;然而,其他抗氧化性能如铁螯合活性和单线态氧猝灭得到增强。此外,纳米颗粒可保护咖啡酸不与蛋白质结合,这表明该纳米系统更有可能在生物介质中维持咖啡酸的抗氧化活性。最后,纳米载体上的天然抗氧化屏障能够延缓掺入该纳米载体的化合物的降解。综合所有研究结果,这项工作为制药和化妆品行业提出了一种合适的工具,作为氧化敏感药物的抗氧化纳米载体。