文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

降钙素基因相关肽诱导三叉神经节卫星胶质细胞细胞因子的差异调节和口面痛觉过敏。

CGRP Induces Differential Regulation of Cytokines from Satellite Glial Cells in Trigeminal Ganglia and Orofacial Nociception.

机构信息

Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan.

Department of Oral Molecular Pathology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan.

出版信息

Int J Mol Sci. 2019 Feb 7;20(3):711. doi: 10.3390/ijms20030711.


DOI:10.3390/ijms20030711
PMID:30736422
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6386987/
Abstract

Neuron-glia interactions contribute to pain initiation and sustainment. Intra-ganglionic (IG) secretion of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) modulates pain transmission through neuron-glia signaling, contributing to various orofacial pain conditions. The present study aimed to investigate the role of satellite glial cells (SGC) in TG in causing cytokine-related orofacial nociception in response to IG administration of CGRP. For that purpose, CGRP alone (10 μL of 10 M), Minocycline (5 μL containing 10 μg) followed by CGRP with one hour gap (Min + CGRP) were administered directly inside the TG in independent experiments. Rats were evaluated for thermal hyperalgesia at 6 and 24 h post-injection using an operant orofacial pain assessment device (OPAD) at three temperatures (37, 45 and 10 °C). Quantitative real-time PCR was performed to evaluate the mRNA expression of IL-1β, IL-6, TNF-α, IL-1 receptor antagonist (IL-1RA), sodium channel 1.7 (NaV 1.7, for assessment of neuronal activation) and glial fibrillary acidic protein (GFAP, a marker of glial activation). The cytokines released in culture media from purified glial cells were evaluated using antibody cytokine array. IG CGRP caused heat hyperalgesia between 6⁻24 h (paired- test, < 0.05). Between 1 to 6 h the mRNA and protein expressions of GFAP was increased in parallel with an increase in the mRNA expression of pro-inflammatory cytokines IL-1β and anti-inflammatory cytokine IL-1RA and NaV1.7 (one-way ANOVA followed by Dunnett's post hoc test, < 0.05). To investigate whether glial inhibition is useful to prevent nociception symptoms, Minocycline (glial inhibitor) was administered IG 1 h before CGRP injection. Minocycline reversed CGRP-induced thermal nociception, glial activity, and down-regulated IL-1β and IL-6 cytokines significantly at 6 h (-test, < 0.05). Purified glial cells in culture showed an increase in release of 20 cytokines after stimulation with CGRP. Our findings demonstrate that SGCs in the sensory ganglia contribute to the occurrence of pain via cytokine expression and that glial inhibition can effectively control the development of nociception.

摘要

神经元-胶质细胞相互作用促进疼痛的起始和维持。三叉神经节(TG)中的神经节内(IG)降钙素基因相关肽(CGRP)的分泌通过神经元-胶质细胞信号调节疼痛传递,导致各种口腔面部疼痛状况。本研究旨在探讨 TG 中卫星胶质细胞(SGC)在 CGRPIG 给药引起细胞因子相关口腔痛觉过敏中的作用。为此,在独立实验中单独给予 CGRP(10μL 10M),米诺环素(5μL 含 10μg),然后 CGRP 间隔一小时(Min+CGRP)。使用操作式口腔疼痛评估装置(OPAD)在三个温度(37、45 和 10°C)下,在注射后 6 和 24 小时评估大鼠的热痛觉过敏。进行实时定量 PCR 以评估白细胞介素 1β(IL-1β)、白细胞介素 6(IL-6)、肿瘤坏死因子-α(TNF-α)、白细胞介素 1 受体拮抗剂(IL-1RA)、钠通道 1.7(NaV1.7,用于评估神经元激活)和神经胶质纤维酸性蛋白(GFAP,胶质激活标志物)的 mRNA 表达。使用抗体细胞因子阵列评估从纯化的神经胶质细胞中释放的细胞因子。IG CGRP 在 6⁻24 小时之间引起热痛觉过敏(配对检验, < 0.05)。在 1 至 6 小时之间,GFAP 的 mRNA 和蛋白表达与促炎细胞因子 IL-1β和抗炎细胞因子 IL-1RA 和 NaV1.7 的 mRNA 表达增加平行增加(单因素方差分析后进行 Dunnett 事后检验, < 0.05)。为了研究胶质抑制是否有助于预防疼痛症状,米诺环素(胶质抑制剂)在 CGRP 注射前 1 小时 IG 给药。米诺环素逆转了 CGRP 诱导的热痛觉过敏,在 6 小时时显著下调了 GFAP 活性和 IL-1β 和 IL-6 细胞因子(-检验, < 0.05)。经刺激后,培养的纯化神经胶质细胞中 20 种细胞因子的释放增加了 CGRP。我们的研究结果表明,感觉神经节中的 SGC 通过细胞因子表达促进疼痛的发生,胶质抑制可有效控制痛觉过敏的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/45b0cff1bb15/ijms-20-00711-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/5fc05a73fb00/ijms-20-00711-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/d86685394a9a/ijms-20-00711-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/d5ede376b074/ijms-20-00711-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/96d97e29a14a/ijms-20-00711-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/9c6b1c2394b4/ijms-20-00711-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/b2afff663e77/ijms-20-00711-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/dc3818ae07d4/ijms-20-00711-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/93b7c3ca6aa1/ijms-20-00711-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/4c3b34e69636/ijms-20-00711-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/45b0cff1bb15/ijms-20-00711-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/5fc05a73fb00/ijms-20-00711-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/d86685394a9a/ijms-20-00711-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/d5ede376b074/ijms-20-00711-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/96d97e29a14a/ijms-20-00711-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/9c6b1c2394b4/ijms-20-00711-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/b2afff663e77/ijms-20-00711-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/dc3818ae07d4/ijms-20-00711-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/93b7c3ca6aa1/ijms-20-00711-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/4c3b34e69636/ijms-20-00711-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91ff/6386987/45b0cff1bb15/ijms-20-00711-g010.jpg

相似文献

[1]
CGRP Induces Differential Regulation of Cytokines from Satellite Glial Cells in Trigeminal Ganglia and Orofacial Nociception.

Int J Mol Sci. 2019-2-7

[2]
Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats.

J Neuroinflammation. 2018-4-20

[3]
Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons.

Neuroscience. 2016-12-17

[4]
Phenotypic change in trigeminal ganglion neurons associated with satellite cell activation via extracellular signal-regulated kinase phosphorylation is involved in lingual neuropathic pain.

Eur J Neurosci. 2017-9-4

[5]
Role of CGRP in Neuroimmune Interaction via NF-κB Signaling Genes in Glial Cells of Trigeminal Ganglia.

Int J Mol Sci. 2020-8-20

[6]
GABA receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: Role of NF-κB and MAPK signaling pathways.

Brain Res Bull. 2019-4-26

[7]
A potent and selective calcitonin gene-related peptide (CGRP) receptor antagonist, MK-8825, inhibits responses to nociceptive trigeminal activation: Role of CGRP in orofacial pain.

Exp Neurol. 2015-9

[8]
IL-1β stimulates COX-2 dependent PGE₂ synthesis and CGRP release in rat trigeminal ganglia cells.

PLoS One. 2011-3-4

[9]
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization.

Int J Mol Sci. 2020-4-22

[10]
The P2Y receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain.

Neurochem Int. 2019-10-3

引用本文的文献

[1]
Unraveling the relationship between inflammation and cluster headache.

Front Neurol. 2025-4-3

[2]
Transcriptome Analysis of Trigeminal Ganglion and Medullary Dorsal Horn in Mice to Identify Potential Targets for Pulpitis-Induced Pain.

ACS Omega. 2025-3-14

[3]
Activation of central and peripheral transient receptor potential melastatin 8 increases susceptibility to spreading depolarization and facilitates trigeminal neuroinflammation.

J Headache Pain. 2025-3-14

[4]
Temporomandibular disorders and mental health: shared etiologies and treatment approaches.

J Headache Pain. 2025-3-12

[5]
Distinct Alterations of Inflammatory Biomarkers in Cluster Headache: A Case Control Study.

Ann Neurol. 2025-7

[6]
Interplay between cannabinoids and the neuroimmune system in migraine.

J Headache Pain. 2024-10-16

[7]
A comprehensive exploration of astrocytes in migraine: a bibliometric and visual analysis.

Eur J Med Res. 2024-6-10

[8]
Differences in Neuropathology between Nitroglycerin-Induced Mouse Models of Episodic and Chronic Migraine.

Int J Mol Sci. 2024-3-26

[9]
A comparison study of headache characteristics and headache-associated quality-of-life of COVID-19 and non-COVID-19 patients.

Narra J. 2022-12

[10]
Expression of CGRP in the Trigeminal Ganglion and Its Effect on the Polarization of Macrophages in Rats with Temporomandibular Arthritis.

Cell Mol Neurobiol. 2024-2-16

本文引用的文献

[1]
Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats.

J Neuroinflammation. 2018-4-20

[2]
Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors.

Eur J Immunol. 2017-6-1

[3]
Behavioral study of a rat model of migraine induced by CGRP.

Neurosci Lett. 2017-6-9

[4]
Prostaglandin E Upregulated Trigeminal Ganglionic Sodium Channel 1.7 Involving Temporomandibular Joint Inflammatory Pain in Rats.

Inflammation. 2017-6

[5]
The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine.

Pain. 2017-4

[6]
Mrpl10 and Tbp Are Suitable Reference Genes for Peripheral Nerve Crush Injury.

Int J Mol Sci. 2017-1-27

[7]
Illuminating the Gap: Neuronal Cross-Talk within Sensory Ganglia and Persistent Pain.

Neuron. 2016-9-7

[8]
Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies.

Neuroscience. 2016-7-22

[9]
Calcitonin Gene-Related Peptide Modulates Heat Nociception in the Human Brain - An fMRI Study in Healthy Volunteers.

PLoS One. 2016-3-18

[10]
Effects of an anesthetic mixture of medetomidine, midazolam, and butorphanol in rats-strain difference and antagonism by atipamezole.

Exp Anim. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索