FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
J Chem Phys. 2019 Feb 7;150(5):054108. doi: 10.1063/1.5064867.
Biochemical reactions often occur at low copy numbers but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. While particle-based models guarantee the level of detail necessary to accurately describe the microscopic dynamics at very low copy numbers, the algorithms used to simulate them typically imply trade-offs between computational efficiency and biochemical accuracy. eGFRD (enhanced Green's Function Reaction Dynamics) is an exact algorithm that evades such trade-offs by partitioning the N-particle system into M ≤ N analytically tractable one- and two-particle systems; the analytical solutions (Green's functions) then are used to implement an event-driven particle-based scheme that allows particles to make large jumps in time and space while retaining access to their state variables at arbitrary simulation times. Here we present "eGFRD2," a new eGFRD version that implements the principle of eGFRD in all dimensions, thus enabling efficient particle-based simulation of biochemical reaction-diffusion processes in the 3D cytoplasm, on 2D planes representing membranes, and on 1D elongated cylinders representative of, e.g., cytoskeletal tracks or DNA; in 1D, it also incorporates convective motion used to model active transport. We find that, for low particle densities, eGFRD2 is up to 6 orders of magnitude faster than conventional Brownian dynamics. We exemplify the capabilities of eGFRD2 by simulating an idealized model of Pom1 gradient formation, which involves 3D diffusion, active transport on microtubules, and autophosphorylation on the membrane, confirming recent experimental and theoretical results on this system to hold under genuinely stochastic conditions.
生化反应通常在低拷贝数下发生,但同时存在于拥挤和多样化的环境中。因此,空间和随机性在生化网络中起着至关重要的作用。空间随机模拟已成为理解微观水平的随机性如何影响此类系统的宏观行为的重要工具。虽然基于粒子的模型保证了以非常低的拷贝数准确描述微观动力学所需的细节水平,但用于模拟它们的算法通常在计算效率和生化准确性之间进行权衡。eGFRD(增强的格林函数反应动力学)是一种精确算法,通过将 N 粒子系统划分为 M ≤ N 个可分析处理的单粒子和双粒子系统来避免这种权衡;然后使用解析解(格林函数)来实现基于事件的粒子方案,该方案允许粒子在时间和空间上进行大跳跃,同时在任意模拟时间保留对其状态变量的访问权限。在这里,我们介绍了“eGFRD2”,这是一个新版本的 eGFRD,它在所有维度上实现了 eGFRD 的原理,从而能够有效地模拟生化反应扩散过程在细胞质的 3D 中,在代表膜的 2D 平面上,以及在代表例如细胞骨架轨迹或 DNA 的 1D 细长圆柱上;在 1D 中,它还包含用于模拟主动运输的对流运动。我们发现,对于低粒子密度,eGFRD2 的速度比传统的布朗动力学快 6 个数量级。我们通过模拟 Pom1 梯度形成的理想化模型来展示 eGFRD2 的功能,该模型涉及 3D 扩散、微管上的主动运输和膜上的自磷酸化,证实了该系统在真正的随机条件下的最近的实验和理论结果。