Suppr超能文献

分析共发生基因相互作用网络以识别疾病-基因关联。

Analyzing a co-occurrence gene-interaction network to identify disease-gene association.

机构信息

Department of Electrical and Computer Engineering, Abu Dhabi, United Arab Emirates.

Department of Industrial and Systems Engineering, Abu Dhabi, United Arab Emirates.

出版信息

BMC Bioinformatics. 2019 Feb 8;20(1):70. doi: 10.1186/s12859-019-2634-7.

Abstract

BACKGROUND

Understanding the genetic networks and their role in chronic diseases (e.g., cancer) is one of the important objectives of biological researchers. In this work, we present a text mining system that constructs a gene-gene-interaction network for the entire human genome and then performs network analysis to identify disease-related genes. We recognize the interacting genes based on their co-occurrence frequency within the biomedical literature and by employing linear and non-linear rare-event classification models. We analyze the constructed network of genes by using different network centrality measures to decide on the importance of each gene. Specifically, we apply betweenness, closeness, eigenvector, and degree centrality metrics to rank the central genes of the network and to identify possible cancer-related genes.

RESULTS

We evaluated the top 15 ranked genes for different cancer types (i.e., Prostate, Breast, and Lung Cancer). The average precisions for identifying breast, prostate, and lung cancer genes vary between 80-100%. On a prostate case study, the system predicted an average of 80% prostate-related genes.

CONCLUSIONS

The results show that our system has the potential for improving the prediction accuracy of identifying gene-gene interaction and disease-gene associations. We also conduct a prostate cancer case study by using the threshold property in logistic regression, and we compare our approach with some of the state-of-the-art methods.

摘要

背景

理解基因网络及其在慢性疾病(如癌症)中的作用是生物研究人员的重要目标之一。在这项工作中,我们提出了一个文本挖掘系统,该系统为整个人类基因组构建了一个基因-基因相互作用网络,然后进行网络分析以识别与疾病相关的基因。我们根据它们在生物医学文献中的共同出现频率,并通过使用线性和非线性稀有事件分类模型来识别相互作用的基因。我们通过使用不同的网络中心性度量来分析构建的基因网络,以确定每个基因的重要性。具体来说,我们应用介数、接近度、特征向量和度中心性指标来对网络的中心基因进行排名,并识别可能与癌症相关的基因。

结果

我们针对不同的癌症类型(即前列腺癌、乳腺癌和肺癌)评估了排名前 15 的基因。识别乳腺癌、前列腺癌和肺癌基因的平均准确率在 80-100%之间。在前列腺癌的案例研究中,该系统平均预测了 80%的前列腺相关基因。

结论

结果表明,我们的系统有可能提高识别基因-基因相互作用和疾病-基因关联的预测准确性。我们还使用逻辑回归中的阈值特性进行了前列腺癌案例研究,并将我们的方法与一些最先进的方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验