Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy.
Department of Clinical and Experimental Medicine, University of Foggia, Via L. Pinto, Foggia 71122, Italy.
Neurobiol Dis. 2019 May;125:176-189. doi: 10.1016/j.nbd.2019.02.003. Epub 2019 Feb 6.
Hyper-active GSK-3β favors Tau phosphorylation during the progression of Alzheimer's disease (AD). Akt is one of the main kinases inhibiting GSK-3β and its activation occurs in response to neurotoxic stimuli including, i.e., oxidative stress. Biliverdin reductase-A (BVR-A) is a scaffold protein favoring the Akt-mediated inhibition of GSK-3β. Reduced BVR-A levels along with increased oxidative stress were observed early in the hippocampus of 3xTg-AD mice (at 6 months), thus suggesting that loss of BVR-A could be a limiting factor in the oxidative stress-induced Akt-mediated inhibition of GSK-3β in AD. We evaluated changes of BVR-A, Akt, GSK-3β, oxidative stress and Tau phosphorylation levels: (a) in brain from young (6-months) and old (12-months) 3xTg-AD mice; and (b) in post-mortem inferior parietal lobule (IPL) samples from amnestic mild cognitive impairment (MCI), from AD and from age-matched controls. Furthermore, similar analyses were performed in vitro in cells lacking BVR-A and treated with HO. Reduced BVR-A levels along with: (a) increased oxidative stress; (b) reduced GSK-3β inhibition; and (c) increased Tau Ser404 phosphorylation (target of GSK-3β activity) without changes of Akt activation in young mice, were observed. Similar findings were obtained in MCI, consistent with the notion that this is a molecular mechanism disrupted in humans. Interestingly, cells lacking BVR-A and treated with HO showed reduced GSK-3β inhibition and increased Tau Ser404 phosphorylation, which resulted from a defect of Akt and GSK-3β physical interaction. Reduced levels of Akt/GSK-3β complex were confirmed in both young 3xTg-AD and MCI brain. We demonstrated that loss of BVR-A impairs the neuroprotective Akt-mediated inhibition of GSK-3β in response to oxidative stress, thus contributing to Tau hyper-phosphorylation in early stage AD. Such changes potential provide promising therapeutic targets for this devastating disorder.
过度活跃的 GSK-3β 在阿尔茨海默病(AD)的进展过程中有利于 Tau 磷酸化。Akt 是抑制 GSK-3β 的主要激酶之一,其激活发生在神经毒性刺激(如氧化应激)的情况下。胆红素还原酶-A(BVR-A)是一种支架蛋白,有利于 Akt 介导的 GSK-3β 抑制。在 3xTg-AD 小鼠的海马体中,早期观察到 BVR-A 水平降低和氧化应激增加(在 6 个月时),因此表明 BVR-A 的缺失可能是 AD 中氧化应激诱导的 Akt 介导的 GSK-3β 抑制的限制因素。我们评估了 BVR-A、Akt、GSK-3β、氧化应激和 Tau 磷酸化水平的变化:(a)在年轻(6 个月)和老年(12 个月)3xTg-AD 小鼠的大脑中;和(b)在遗忘性轻度认知障碍(MCI)、AD 和年龄匹配的对照组的死后顶下小叶(IPL)样本中。此外,还在缺乏 BVR-A 并接受 HO 处理的细胞中进行了类似的分析。在年轻小鼠中观察到 BVR-A 水平降低伴随着:(a)氧化应激增加;(b)GSK-3β 抑制减少;和(c)Tau Ser404 磷酸化增加(GSK-3β 活性的靶点),而 Akt 激活没有变化。在 MCI 中也得到了类似的发现,这与该分子机制在人类中被破坏的观点一致。有趣的是,缺乏 BVR-A 并接受 HO 处理的细胞显示出 GSK-3β 抑制减少和 Tau Ser404 磷酸化增加,这是由于 Akt 和 GSK-3β 物理相互作用的缺陷。在年轻的 3xTg-AD 和 MCI 大脑中均证实 Akt/GSK-3β 复合物水平降低。我们证明,BVR-A 的缺失会损害氧化应激下 Akt 介导的 GSK-3β 的神经保护抑制作用,从而导致 AD 早期 Tau 过度磷酸化。这些变化可能为这种破坏性疾病提供有希望的治疗靶点。