Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
Department of Medical Microbiology & Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park, Cardiff CF14 4XN, United Kingdom.
Biochim Biophys Acta Gen Subj. 2019 Apr;1863(4):742-748. doi: 10.1016/j.bbagen.2019.02.004. Epub 2019 Feb 7.
The β-lactam antibiotics represent the most successful drug class for treatment of bacterial infections. Resistance to them, importantly via production of β-lactamases, which collectively are able to hydrolyse all classes of β-lactams, threatens their continued widespread use. Bicyclic boronates show potential as broad spectrum inhibitors of the mechanistically distinct serine- (SBL) and metallo- (MBL) β-lactamase families.
Using biophysical methods, including crystallographic analysis, we have investigated the binding mode of bicyclic boronates to clinically important β-lactamases. Induction experiments and agar-based MIC screening against MDR-Enterobacteriaceae (n = 132) were used to evaluate induction properties and the in vitro efficacy of a bicyclic boronate in combination with meropenem.
Crystallographic analysis of a bicyclic boronate in complex with AmpC from Pseudomonas aeruginosa reveals it binds to form a tetrahedral boronate species. Microbiological studies on the clinical coverage (in combination with meropenem) and induction of β-lactamases by bicyclic boronates further support the promise of such compounds as broad spectrum β-lactamase inhibitors.
Together with reported studies on the structural basis of their inhibition of class A, B and D β-lactamases, biophysical studies, including crystallographic analysis, support the proposal that bicyclic boronates mimic tetrahedral intermediates common to SBL and MBL catalysis.
Bicyclic boronates are a new generation of broad spectrum inhibitors of both SBLs and MBLs.
β-内酰胺类抗生素是治疗细菌感染最成功的药物类别。它们的耐药性,特别是通过产生能够水解所有β-内酰胺类抗生素的β-内酰胺酶,对它们的广泛使用构成了威胁。双环硼酸酯类化合物具有成为广谱抑制剂的潜力,能够抑制机制不同的丝氨酸(SBL)和金属(MBL)β-内酰胺酶家族。
我们使用生物物理方法,包括晶体学分析,研究了双环硼酸酯类化合物与临床重要的β-内酰胺酶的结合模式。诱导实验和基于琼脂的 MIC 筛选用于评估诱导特性和硼酸酯类化合物与美罗培南联合使用的体外疗效,共纳入了 132 株耐多药肠杆菌科(MDR-Enterobacteriaceae)。
对铜绿假单胞菌 AmpC 与双环硼酸酯形成的复合物的晶体学分析表明,它通过形成四面体硼酸酯物种进行结合。关于硼酸酯类化合物的临床覆盖范围(与美罗培南联合使用)以及对β-内酰胺酶的诱导作用的微生物学研究进一步支持了这些化合物作为广谱β-内酰胺酶抑制剂的潜力。
与已报道的关于它们抑制 A 类、B 类和 D 类β-内酰胺酶的结构基础的研究一起,包括晶体学分析在内的生物物理研究支持了这样的观点,即双环硼酸酯类化合物模拟了 SBL 和 MBL 催化中常见的四面体中间体。
双环硼酸酯类化合物是 SBL 和 MBL 的新一代广谱抑制剂。