Saldaña Fernando, Barradas Ignacio
CIMAT, Guanajuato Gto, 36000 Mexico.
Infect Dis Model. 2019 Jan 4;4:1-10. doi: 10.1016/j.idm.2018.12.001. eCollection 2019.
In this paper, we study general recovery functions and treatment in the dynamics of an model for sexually transmitted infections with nonzero partnership length. It is shown how partnership dynamics influences the predicted prevalence at the steady state and the basic reproduction number. Sobol's indices are used to evaluate the contribution of model parameters to the overall variance of . The recovery functions studied here take into account that society's capacity to provide treatment is limited when the number of infected individuals is large. Bifurcation analysis is used to establish a relationship between an alert level of prevalence and the minimum recovery time that guarantees the eradication of the disease. We also show that a backward bifurcation can occur when there are delays in the treatment of infected individuals.
在本文中,我们研究了具有非零伴侣关系时长的性传播感染模型动力学中的一般恢复函数和治疗情况。展示了伴侣关系动态如何影响稳态时的预测患病率和基本再生数。使用索伯列夫指数来评估模型参数对总体方差的贡献。这里研究的恢复函数考虑到当感染个体数量众多时,社会提供治疗的能力是有限的。使用分岔分析来建立患病率警戒水平与保证疾病根除的最短恢复时间之间的关系。我们还表明,当感染个体的治疗存在延迟时,可能会出现反向分岔。