Kretzschmar M, Jager J C, Reinking D P, Van Zessen G, Brouwers H
National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, The Netherlands.
Math Biosci. 1994 Dec;124(2):181-205. doi: 10.1016/0025-5564(94)90042-6.
We study a model for pair formation and separation with two types of pairs which differ in average duration. A fraction f of all newly formed pairs have a long duration (denoted by "steady"), the remaining fraction 1-f have a short duration ("casual"). This distinction is motivated by data about the survival times of partnerships in a sociological survey. In this population we consider a sexually transmitted disease, which can have different transmission rates in steady and in causal partnerships. We investigate under which conditions an epidemic can occur after introduction of the disease into a population where the process of pair formation and separation is at equilibrium. If there is no recovery we can compute an explicit expression for the basic reproduction ratio R0; if we take recovery into account we can derive a condition for the stability of the disease-free equilibrium which is equivalent to R0 < 1. We discuss how R0 depends on various model parameters.
我们研究了一个关于配对形成和分离的模型,其中有两种平均持续时间不同的配对类型。所有新形成的配对中有一部分f具有较长的持续时间(用“稳定”表示),其余部分1 - f具有较短的持续时间(“随意”)。这种区分是基于一项社会学调查中关于伴侣关系存续时间的数据得出的。在这个群体中,我们考虑一种性传播疾病,它在稳定和随意的伴侣关系中可能有不同的传播率。我们研究在何种条件下,当将该疾病引入一个配对形成和分离过程处于平衡状态的群体后会发生疫情。如果没有恢复过程,我们可以计算出基本繁殖数R0的显式表达式;如果考虑恢复过程,我们可以推导出无病平衡稳定性的条件,该条件等同于R0 < 1。我们讨论了R0如何依赖于各种模型参数。