Bone Healing Group, Small Animal Surgery Department, Veterinary School , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.
Materials in Medicine Group, Division of Applied Materials Science, Department of Engineering Sciences , Uppsala University , 751 21 Uppsala , Sweden.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8818-8830. doi: 10.1021/acsami.8b20749. Epub 2019 Feb 21.
Bone apatite consists of carbonated calcium-deficient hydroxyapatite (CDHA) nanocrystals. Biomimetic routes allow fabricating synthetic bone grafts that mimic biological apatite. In this work, we explored the role of two distinctive features of biomimetic apatites, namely, nanocrystal morphology (plate vs needle-like crystals) and carbonate content, on the bone regeneration potential of CDHA scaffolds in an in vivo canine model. Both ectopic bone formation and scaffold degradation were drastically affected by the nanocrystal morphology after intramuscular implantation. Fine-CDHA foams with needle-like nanocrystals, comparable in size to bone mineral, showed a markedly higher osteoinductive potential and a superior degradation than chemically identical coarse-CDHA foams with larger plate-shaped crystals. These findings correlated well with the superior bone-healing capacity showed by the fine-CDHA scaffolds when implanted intraosseously. Moreover, carbonate doping of CDHA, which resulted in small plate-shaped nanocrystals, accelerated both the intrinsic osteoinduction and the bone healing capacity, and significantly increased the cell-mediated resorption. These results suggest that tuning the chemical composition and the nanostructural features may allow the material to enter the physiological bone remodeling cycle, promoting a tight synchronization between scaffold degradation and bone formation.
骨磷灰石由碳酸化的缺钙羟基磷灰石(CDHA)纳米晶体组成。仿生途径允许制造模仿生物磷灰石的合成骨移植物。在这项工作中,我们探索了仿生磷灰石的两个独特特征(纳米晶体形态(板状与针状晶体)和碳酸盐含量)对 CDHA 支架在体内犬模型中的骨再生潜力的影响。在肌肉内植入后,纳米晶体形态对异位骨形成和支架降解有很大影响。具有与骨矿物质相当大小的针状纳米晶体的精细 CDHA 泡沫显示出明显更高的成骨诱导潜力和优于化学相同的具有较大板状晶体的粗 CDHA 泡沫的降解性能。这些发现与精细 CDHA 支架在骨内植入时表现出的优异骨愈合能力很好地相关。此外,CDHA 的碳酸盐掺杂导致形成小板状纳米晶体,这加速了内在的成骨诱导和骨愈合能力,并显著增加了细胞介导的吸收。这些结果表明,调整化学组成和纳米结构特征可以使材料进入生理骨重塑周期,促进支架降解和骨形成之间的紧密同步。