Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
MIM Software, Cleveland, OH, 44122, USA.
Med Phys. 2019 May;46(5):2394-2402. doi: 10.1002/mp.13444. Epub 2019 Mar 12.
Yttrium-90 ( Y) microsphere radioembolization enables selective internal radiotherapy for hepatic malignancies. Currently, there is no standard postdelivery imaging and dosimetry of the microsphere distribution to verify treatment. Recent studies have reported utilizing the small positron yield of Y (32 ppm) with positron emission tomography (PET) to perform treatment verification and dosimetry analysis. In this study, we validated a commercial dosimetry software, MIM SurePlan™ LiverY90 (MIM Software Inc., Cleveland, OH), for clinical use.
A MATLAB-based algorithm for Y PET-based dosimetry was developed in-house and validated for the purpose of commissioning the commercial software. The algorithm is based on voxel S values and dosimetry formalism reported in MIRD Pamphlet 17. We validated the in-house algorithm to establish it as the ground truth by comparing results from a digital point phantom and a digital uniform cylinder to manual calculations. Once we validated our in-house MATLAB-based algorithm, we used it to perform acceptance testing and commissioning of the commercial dosimetry software, MIM SurePlan, which uses the same dosimetry formalism. A 0.4 cm/5% gamma test was performed on PET-derived dose maps from each algorithm of uniform digital and nonuniform physical phantoms filled with Y chloride solution. Average dose (D ) and minimum dose to 70% (D ) of a given volume of interest (VOI) were compared for the digital phantom, the physical phantom, and five patient cases (27 tumor VOIs), representing different clinical scenarios.
The gamma-pass rates were 97.26% and 97.66% for the digital and physical phantoms, respectively. The differences between D and D were 0.076% and 0.10% for the digital phantom, respectively, and <5.2% for various VOIs in the physical phantom. In the clinical cases, 96.3% of the VOIs had a difference <5% for D , and 88.9% of the VOIs had a difference <5% for D .
Dose calculation results from MIM SurePlan were found to be in good agreement with our in-house algorithm. This indicates that MIM SurePlan performs as it should and, hence, can be deemed accepted and commissioned for clinical use for post-implant PET-based dosimetry of Y radioembolization.
钇-90(Y)微球放射栓塞能够实现肝脏恶性肿瘤的选择性内放射治疗。目前,尚无标准的微球分布后成像和剂量测定方法来验证治疗效果。最近的研究报告称,利用 Y 的小正电子产额(32ppm)结合正电子发射断层扫描(PET)来进行治疗验证和剂量分析。在这项研究中,我们验证了一种商用剂量测定软件,即 MIM SurePlan™ LiverY90(MIM 软件公司,克利夫兰,俄亥俄州),以用于临床。
我们开发了一种基于 MATLAB 的 Y 放射性核素 PET 剂量测定算法,并对其进行了内部验证,目的是为了对商业软件进行调试。该算法基于 MIRD 小册子 17 中报告的体素 S 值和剂量学公式。我们通过将数字点体模和数字均匀圆柱体的结果与手动计算结果进行比较,验证了我们内部开发的算法,以将其确立为真实值。一旦验证了我们基于 MATLAB 的内部算法,我们就使用它来对商业剂量测定软件 MIM SurePlan 进行验收测试和调试,该软件使用相同的剂量学公式。我们对充满 Y 氯化物溶液的均匀数字和非均匀物理体模的 PET 衍生剂量图分别进行了 0.4cm/5%的伽马测试。比较了数字体模、物理体模和五个患者病例(27 个肿瘤 VOI)的特定体积感兴趣区(VOI)的平均剂量(D)和最小剂量至 70%(D)。
数字体模和物理体模的伽马通过率分别为 97.26%和 97.66%。数字体模的 D 和 D 之间的差异分别为 0.076%和 0.10%,而物理体模中各种 VOI 的差异<5.2%。在临床病例中,96.3%的 VOI 的 D 差异<5%,88.9%的 VOI 的 D 差异<5%。
MIM SurePlan 的剂量计算结果与我们的内部算法吻合良好。这表明 MIM SurePlan 能够正常运行,因此可以被视为可以接受的,并被授权用于 Y 放射性栓塞植入后 PET 剂量测定的临床应用。