REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
Bioelectrochemistry. 2019 Jun;127:76-86. doi: 10.1016/j.bioelechem.2019.01.010. Epub 2019 Feb 5.
An enzymatic biosensor based on nitric oxide reductase (NOR; purified from Marinobacter hydrocarbonoclasticus) was developed for nitric oxide (NO) detection. The biosensor was prepared by deposition onto a pyrolytic graphite electrode (PGE) of a nanocomposite constituted by carboxylated single-walled carbon nanotubes (SWCNTs), a lipidic bilayer [1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-PEG)] and NOR. NOR direct electron transfer and NO bioelectrocatalysis were characterized by several electrochemical techniques. The biosensor development was also followed by scanning electron microscopy and Fourier transform infrared spectroscopy. Improved enzyme stability and electron transfer (1.96 × 10 cm.s apparent rate constant) was obtained with the optimum SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR) ratio of 4/2.5/4 (v/v/v), which biomimicked the NOR environment. The PGE/[SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR] biosensor exhibited a low Michaelis-Menten constant (4.3 μM), wide linear range (0.44-9.09 μM), low detection limit (0.13 μM), high repeatability (4.1% RSD), reproducibility (7.0% RSD), and stability (ca. 5 weeks). Selectivity tests towards L-arginine, ascorbic acid, sodium nitrate, sodium nitrite and glucose showed that these compounds did not significantly interfere in NO biosensing (91.0 ± 9.3%-98.4 ± 5.3% recoveries). The proposed biosensor, by incorporating the benefits of biomimetic features of the phospholipid bilayer with SWCNT's inherent properties and NOR bioelectrocatalytic activity and selectivity, is a promising tool for NO.
基于一氧化氮还原酶(NOR;从 Marinobacter hydrocarbonoclasticus 中纯化)的酶生物传感器被开发用于检测一氧化氮(NO)。该生物传感器是通过将由羧基化单壁碳纳米管(SWCNT)、脂质双层[1,2-二-(9Z-十八烯酰基)-sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二-(9Z-十八烯酰基)-3-三甲基铵丙烷(DOTAP)、1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-聚乙二醇(DSPE-PEG)]和 NOR 组成的纳米复合材料沉积在热解石墨电极(PGE)上制备的。NOR 的直接电子转移和 NO 的生物电化学催化作用通过几种电化学技术进行了表征。还通过扫描电子显微镜和傅里叶变换红外光谱对生物传感器的开发进行了跟踪。通过优化 SWCNT/(DOPE:DOTAP:DSPE-PEG)/NOR 的最佳比例为 4/2.5/4(v/v/v),获得了提高的酶稳定性和电子转移(1.96×10cm.s 的表观速率常数),这模拟了 NOR 的环境。PGE/[SWCNT/(DOPE:DOTAP:DSPE-PEG)/NOR]生物传感器表现出低米氏常数(4.3μM)、宽线性范围(0.44-9.09μM)、低检测限(0.13μM)、高重复性(4.1%RSD)、重现性(7.0%RSD)和稳定性(约 5 周)。对 L-精氨酸、抗坏血酸、硝酸钠、亚硝酸钠和葡萄糖的选择性测试表明,这些化合物在 NO 生物传感中没有显著干扰(91.0±9.3%-98.4±5.3%回收率)。该生物传感器通过将磷脂双层的仿生特征与 SWCNT 的固有特性和 NOR 的生物电化学催化活性和选择性相结合,是一种很有前途的 NO 检测工具。