Suppr超能文献

Ras 的激发动力学引发了运动细胞中 PIP3 信号的自发对称破缺。

Excitable dynamics of Ras triggers spontaneous symmetry breaking of PIP3 signaling in motile cells.

机构信息

Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan.

出版信息

J Cell Sci. 2019 Mar 4;132(5):jcs224121. doi: 10.1242/jcs.224121.

Abstract

Spontaneous cell movement is underpinned by an asymmetric distribution of signaling molecules including small G proteins and phosphoinositides on the cell membrane. However, the molecular network necessary for spontaneous symmetry breaking has not been fully elucidated. Here, we report that, in , the spatiotemporal dynamics of GTP bound Ras (Ras-GTP) breaks the symmetry due its intrinsic excitability even in the absence of extracellular spatial cues and downstream signaling activities. A stochastic excitation of local and transient Ras activation induced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) accumulation via direct interaction with Phosphoinositide 3-kinase (PI3K), causing tightly coupled traveling waves that propagated along the membrane. Comprehensive phase analysis of the waves of Ras-GTP and PIP3 metabolism-related molecules revealed the network structure of the excitable system including positive-feedback regulation of Ras-GTP by the downstream PIP3. A mathematical model reconstituted a series of the observed symmetry-breaking phenomena, illustrating the essential involvement of Ras excitability in the cellular decision-making process.

摘要

细胞的自发性运动是由细胞膜上信号分子(包括小 G 蛋白和磷酸肌醇)的不对称分布所支撑的。然而,对于自发对称性破缺所必需的分子网络还没有完全阐明。在这里,我们报告说,在 中,即使在没有细胞外空间线索和下游信号转导活动的情况下,结合 GTP 的 Ras(Ras-GTP)的时空动力学由于其内在的兴奋会打破对称性。局部和瞬时 Ras 激活的随机激发通过与磷酸肌醇 3-激酶(PI3K)的直接相互作用诱导磷脂酰肌醇(3,4,5)-三磷酸(PIP3)的积累,导致沿膜传播的紧密偶联的传播波。对 Ras-GTP 和与 PIP3 代谢相关分子的波的综合相位分析揭示了兴奋系统的网络结构,包括 Ras-GTP 由下游 PIP3 进行的正反馈调节。一个数学模型再现了一系列观察到的对称性破缺现象,说明了 Ras 兴奋在细胞决策过程中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a5/6432713/a2a7c03ae2f2/joces-132-224121-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验