Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan.
J Cell Sci. 2019 Mar 4;132(5):jcs224121. doi: 10.1242/jcs.224121.
Spontaneous cell movement is underpinned by an asymmetric distribution of signaling molecules including small G proteins and phosphoinositides on the cell membrane. However, the molecular network necessary for spontaneous symmetry breaking has not been fully elucidated. Here, we report that, in , the spatiotemporal dynamics of GTP bound Ras (Ras-GTP) breaks the symmetry due its intrinsic excitability even in the absence of extracellular spatial cues and downstream signaling activities. A stochastic excitation of local and transient Ras activation induced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) accumulation via direct interaction with Phosphoinositide 3-kinase (PI3K), causing tightly coupled traveling waves that propagated along the membrane. Comprehensive phase analysis of the waves of Ras-GTP and PIP3 metabolism-related molecules revealed the network structure of the excitable system including positive-feedback regulation of Ras-GTP by the downstream PIP3. A mathematical model reconstituted a series of the observed symmetry-breaking phenomena, illustrating the essential involvement of Ras excitability in the cellular decision-making process.
细胞的自发性运动是由细胞膜上信号分子(包括小 G 蛋白和磷酸肌醇)的不对称分布所支撑的。然而,对于自发对称性破缺所必需的分子网络还没有完全阐明。在这里,我们报告说,在 中,即使在没有细胞外空间线索和下游信号转导活动的情况下,结合 GTP 的 Ras(Ras-GTP)的时空动力学由于其内在的兴奋会打破对称性。局部和瞬时 Ras 激活的随机激发通过与磷酸肌醇 3-激酶(PI3K)的直接相互作用诱导磷脂酰肌醇(3,4,5)-三磷酸(PIP3)的积累,导致沿膜传播的紧密偶联的传播波。对 Ras-GTP 和与 PIP3 代谢相关分子的波的综合相位分析揭示了兴奋系统的网络结构,包括 Ras-GTP 由下游 PIP3 进行的正反馈调节。一个数学模型再现了一系列观察到的对称性破缺现象,说明了 Ras 兴奋在细胞决策过程中的重要作用。