Suppr超能文献

定向氧化锌纳米晶体阵列的特定位置生长。

Site-specific growth of oriented ZnO nanocrystal arrays.

作者信息

Bai Rekha, Pandya Dinesh K, Chaudhary Sujeet, Dhaka Veer, Khayrudinov Vladislav, Lemettinen Jori, Kauppinen Christoffer, Lipsanen Harri

机构信息

Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi 110016, India.

Department of Electronics and Nanoengineering, Micronova, Aalto University, Tietotie 3, 02150 Espoo, Finland.

出版信息

Beilstein J Nanotechnol. 2019 Jan 24;10:274-280. doi: 10.3762/bjnano.10.26. eCollection 2019.

Abstract

We report on the growth of ZnO nanocrystals having a hexagonal, prismatic shape, sized 700 nm × 600 nm, on bare indium tin oxide (ITO) substrates. The growth is induced by a low ion flux and involves a low-temperature electrodeposition technique. Further, vertically aligned periodic nanocrystal (NC) growth is engineered at predefined positions on polymer-coated ITO substrates patterned with ordered pores. The vertical alignment of ZnO NCs along the -axis is achieved via ion-by-ion nucleation-controlled growth for patterned pores of size ≈600 nm; however, many-coupled branched NCs with hexagonal shape are formed when a patterned pore size of ≈200 nm is used. X-ray diffraction data is in agreement with the observed morphology. A mechanism is proposed to interpret the observed site-specific oriented/branched growth that is correlated to the pore size. As ordered NC arrays have the potential to generate new collective properties different from single NCs, our first demonstration of a cost effective and facile fabrication process opens up new possibilities for devices with versatile functionalities.

摘要

我们报道了在裸露的铟锡氧化物(ITO)衬底上生长出的尺寸为700 nm×600 nm的六边形棱柱形ZnO纳米晶体。这种生长是由低离子通量诱导的,并且涉及一种低温电沉积技术。此外,在具有有序孔图案的聚合物涂层ITO衬底上的预定义位置设计了垂直排列的周期性纳米晶体(NC)生长。对于尺寸约为600 nm的图案化孔,通过逐个离子成核控制生长实现了ZnO NCs沿z轴的垂直排列;然而,当使用尺寸约为200 nm的图案化孔时,会形成许多具有六边形形状的耦合分支NCs。X射线衍射数据与观察到的形态一致。提出了一种机制来解释观察到的与孔径相关的位点特异性取向/分支生长。由于有序NC阵列有可能产生不同于单个NCs的新集体特性,我们首次展示的具有成本效益且简便的制造工艺为具有多功能的器件开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/083d/6350887/b6c1663ed8a3/Beilstein_J_Nanotechnol-10-274-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验