Cárdenas-Peña David, Tobar-Rodríguez Andres, Castellanos-Dominguez German, Neuroimaging Initiative Alzheimer's Disease
Universidad Nacional de Colombia, Signal Processing and Recognition Group, Manizales, Colombia.
J Med Imaging (Bellingham). 2019 Jan;6(1):014003. doi: 10.1117/1.JMI.6.1.014003. Epub 2019 Feb 4.
The effectiveness of brain magnetic resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of associated tissues or anatomical structures. We introduce an enhanced brain segmentation approach of Bayesian label fusion that includes the construction of adaptive target-specific probabilistic priors using atlases ranked by kernel-based similarity metrics to deal with the anatomical variability of collected MRI data. In particular, the developed segmentation approach appraises patch-based voxel representation to enhance the voxel embedding in spaces with increased tissue discrimination, as well as the construction of a neighborhood-dependent model that addresses the label assignment of each region with a different patch complexity. To measure the similarity between the target and training atlases, we propose a tensor-based kernel metric that also includes the training labeling set. We evaluate the proposed approach, adaptive Bayesian label fusion using kernel-based similarity metrics, in the specific case of hippocampus segmentation of five benchmark MRI collections, including ADNI dataset, resulting in an increased performance (assessed through the Dice index) as compared to other recent works.
脑磁共振成像(MRI)作为一种有用的评估工具,其有效性在很大程度上取决于对相关组织或解剖结构所进行的分割。我们介绍一种增强的贝叶斯标签融合脑部分割方法,该方法包括使用基于核相似性度量排序的图谱构建自适应目标特定概率先验,以处理所收集MRI数据的解剖变异性。具体而言,所开发的分割方法评估基于块的体素表示,以增强体素在具有更高组织辨别力的空间中的嵌入,以及构建一个依赖邻域的模型,该模型以不同的块复杂度处理每个区域的标签分配。为了测量目标图谱与训练图谱之间的相似性,我们提出一种基于张量的核度量,该度量还包括训练标签集。我们在包括ADNI数据集在内的五个基准MRI数据集的海马体分割的特定情况下,评估所提出的方法——使用基于核相似性度量的自适应贝叶斯标签融合,与其他近期研究相比,其性能有所提高(通过骰子系数评估)。