Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands.
Department of Mathematics and Computer Science , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands.
J Chem Theory Comput. 2019 Mar 12;15(3):1777-1784. doi: 10.1021/acs.jctc.8b01285. Epub 2019 Feb 21.
We present a general framework for the construction of a deep feedforward neural network (FFNN) to predict distance and orientation dependent electronic coupling elements in disordered molecular materials. An evolutionary algorithm automatizes the selection of an optimal architecture of the artificial neural network within a predefined search space. Systematic guidance, beyond minimizing the model error with stochastic gradient descent based backpropagation, is provided by simultaneous maximization of a model fitness that takes into account additional physical properties, such as the field-dependent carrier mobility. As a prototypical system, we consider hole transport in amorphous tris(8-hydroxyquinolinato)aluminum. Reference data for training and validation is obtained from multiscale ab initio simulations, in which coupling elements are evaluated using density-functional theory, for a system containing 4096 molecules. The Coulomb matrix representation is chosen to encode the explicit molecular pair coordinates into a rotation and translation invariant feature set for the FFNN. The final optimized deep feedforward neural network is tested for transport models without and with energetic disorder. It predicts electronic coupling elements and mobilities in excellent agreement with the reference data. Such a FFNN is readily applicable to much larger systems at negligible computational cost, providing a powerful surrogate model to overcome the size limitations of the ab initio approach.
我们提出了一种构建深度前馈神经网络(FFNN)的通用框架,用于预测无序分子材料中距离和方向相关的电子耦合元素。 进化算法自动在预定义的搜索空间内选择人工神经网络的最佳结构。 通过同时最大化模型适应性来提供系统指导,该模型适应性考虑了其他物理性质,例如场依赖的载流子迁移率。 作为原型系统,我们考虑了无定形三(8-羟基喹啉)铝中的空穴传输。 训练和验证的参考数据是通过多尺度从头算模拟获得的,其中使用密度泛函理论评估了包含 4096 个分子的系统中的耦合元素。 选择库仑矩阵表示形式将显式分子对坐标编码为 FFNN 的旋转和平移不变特征集。 最终优化的深度前馈神经网络用于无和有能量无序的输运模型进行测试。 它预测的电子耦合元素和迁移率与参考数据非常吻合。 这种 FFNN 可以在几乎可以忽略不计的计算成本下轻松应用于更大的系统,提供了一种强大的替代模型,可以克服从头算方法的尺寸限制。