Cuny Jérôme, Xie Yu, Pickard Chris J, Hassanali Ali A
Laboratoire de Chimie et Physique Quantiques (LCPQ), Université de Toulouse [UPS] and CNRS , 118 Route de Narbonne, F-31062 Toulouse, France.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
J Chem Theory Comput. 2016 Feb 9;12(2):765-73. doi: 10.1021/acs.jctc.5b01006. Epub 2016 Jan 19.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials.
核磁共振(NMR)光谱学是探测各种固态化合物局部原子排列的最强大实验工具之一。然而,由于相关光谱的复杂性,特别是对于非晶态材料,根据结构信息对其进行解释往往具有挑战性。通过将分子动力学模拟与对相应化学位移和四极耦合张量的从头算评估相结合来生成逼真的结构模型,可以克服这些困难。然而,由于计算限制,这种方法仅限于相对较小的系统规模,这对于非晶态材料而言,无法对定量描述系统所需的局部环境分布进行充分的统计抽样。在这项工作中,我们提出了一种有效且准确地预测非常大系统的NMR参数的方法。这是通过使用从头算形式计算的NMR参数的高维神经网络表示来实现的。为了说明这种方法的潜力,我们将这种神经网络NMR(NN-NMR)方法应用于各种结晶二氧化硅多晶型物和二氧化硅玻璃的(17)O和(29)Si四极耦合以及化学位移参数。这种方法原则上是通用的,并且有可能应用于预测各种材料的NMR性质。