Suppr超能文献

跨物种基因筛选以鉴定阿尔茨海默病中 APP 减少的激酶靶标。

Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease.

机构信息

Department of Neuroscience.

Department of Molecular and Human Genetics.

出版信息

Hum Mol Genet. 2019 Jun 15;28(12):2014-2029. doi: 10.1093/hmg/ddz034.

Abstract

An early hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aβ is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCβ-a known modifier identified by the screen-in an APP transgenic mouse model. PKCβ was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCβ initially diminished APP and delayed plaque formation. Despite persistent PKCβ suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.

摘要

阿尔茨海默病的早期标志之一是淀粉样蛋白-β(Aβ)的积累,这激发了许多针对这种肽的治疗策略。另一种方法是破坏淀粉样前体蛋白(APP),Aβ就是从 APP 衍生而来的。我们使用 siRNA 筛选来研究调节 APP 稳定性的先天途径,寻找那些能够减少人细胞系和转基因果蝇中 APP 的修饰物。作为原理验证,我们在 APP 转基因小鼠模型中验证了通过筛选鉴定的已知修饰物 PKCβ。使用新型腺相关病毒穿梭载体对 PKCβ 进行基因靶向,通过颅内注射传递 miRNA 适配的 shRNA。体内降低 PKCβ 最初会减少 APP 并延迟斑块形成。尽管持续抑制 PKCβ,但随着时间的推移,对 APP 和淀粉样蛋白的影响会减弱。我们的研究推进了这种方法,用于挖掘与疾病相关蛋白的可成药修饰物,同时警告说,可能需要进行长时间的体内验证才能揭示对疗效的新出现的限制。

相似文献

1
Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease.
Hum Mol Genet. 2019 Jun 15;28(12):2014-2029. doi: 10.1093/hmg/ddz034.
3
Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in APP transgenic rats and human brain.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6844-6854. doi: 10.1073/pnas.1914593117. Epub 2020 Mar 6.
4
Abeta conformational change is central to Alzheimer's disease.
Neurobiol Aging. 2002 Nov-Dec;23(6):1085-8. doi: 10.1016/s0197-4580(02)00040-4.
6
Regulation of Alzheimer beta-amyloid precursor trafficking and metabolism.
Biochim Biophys Acta. 2000 Jul 26;1502(1):44-52. doi: 10.1016/s0925-4439(00)00031-4.
7
[Alzheimer disease: cellular and molecular aspects].
Bull Mem Acad R Med Belg. 2005;160(10-12):445-9; discussion 450-1.
8
Haplodeficiency of Cathepsin D does not affect cerebral amyloidosis and autophagy in APP/PS1 transgenic mice.
J Neurochem. 2017 Jul;142(2):297-304. doi: 10.1111/jnc.14048. Epub 2017 May 26.
9
Alzheimer's disease pathology is attenuated in a CD38-deficient mouse model.
Ann Neurol. 2015 Jul;78(1):88-103. doi: 10.1002/ana.24425. Epub 2015 May 25.

引用本文的文献

3
Identification of risk genes for Alzheimer's disease by gene embedding.
Cell Genom. 2022 Sep 14;2(9). doi: 10.1016/j.xgen.2022.100162. Epub 2022 Jul 26.
4
Temporal and spatially controlled APP transgene expression using Cre-dependent alleles.
Dis Model Mech. 2022 May 1;15(5). doi: 10.1242/dmm.049330. Epub 2022 May 13.

本文引用的文献

1
A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach.
J Neurosci. 2018 Oct 24;38(43):9286-9301. doi: 10.1523/JNEUROSCI.0254-18.2018. Epub 2018 Sep 24.
3
Inhibition of PKCδ reduces amyloid-β levels and reverses Alzheimer disease phenotypes.
J Exp Med. 2018 Jun 4;215(6):1665-1677. doi: 10.1084/jem.20171193. Epub 2018 May 8.
4
Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead.
Eur J Med Chem. 2018 Mar 25;148:436-452. doi: 10.1016/j.ejmech.2018.02.035. Epub 2018 Feb 15.
5
EGFR-TKIs resistance via EGFR-independent signaling pathways.
Mol Cancer. 2018 Feb 19;17(1):53. doi: 10.1186/s12943-018-0793-1.
6
Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis.
Am J Pathol. 2018 Mar;188(3):739-756. doi: 10.1016/j.ajpath.2017.11.011. Epub 2017 Dec 15.
8
ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion.
Cell. 2017 Jan 26;168(3):427-441.e21. doi: 10.1016/j.cell.2016.12.044. Epub 2017 Jan 19.
10
Forces shaping the Drosophila wing.
Mech Dev. 2017 Apr;144(Pt A):23-32. doi: 10.1016/j.mod.2016.10.003. Epub 2016 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验