a Department of Psychology and Human Development , Vanderbilt University.
Multivariate Behav Res. 2019 Mar-Apr;54(2):264-287. doi: 10.1080/00273171.2018.1522497. Epub 2019 Feb 12.
In structural equation modeling applications, parcels-averages or sums of subsets of item scores-are often used as indicators of latent constructs. Parcel-allocation variability (PAV) is variability in results that arises sample alternative item-to-parcel allocations. PAV can manifest in all results of a parcel-level model (e.g., model fit, parameter estimates, standard errors, and inferential decisions). It is a source of uncertainty in parcel-level model results that can be investigated, reported, and accounted for. Failing to do so raises representativeness and replicability concerns. However, in recent methodological literature (Cole, Perkins, & Zelkowitz, 2016 ; Little, Rhemtulla, Gibson, & Shoemann, 2013 ; Marsh, Ludtke, Nagengast, Morin, & von Davier, 2013 ; Rhemtulla, 2016 ) parceling has been justified and recommended in several situations without quantifying or accounting for PAV. In this article, we explain and demonstrate problems with these rationales. Overall, we find that: (1) using a purposive parceling algorithm for a multidimensional construct does not avoid PAV; (2) passing a test of unidimensionality of the item-level model need not avoid PAV; and (3) a desire to improve power for detecting structural misspecification does not warrant parceling without addressing PAV; we show how to simultaneously avoid PAV and obtain even higher power by comparing item-level models differing in structural constraints. Implications for practice are discussed.
在结构方程建模应用中,通常将项目分数的子集平均值或总和用作潜在结构的指标。分块分配变异性(PAV)是由于样本中替代项目到分块分配而产生的结果变异性。PAV 可以在分块级模型的所有结果中表现出来(例如,模型拟合度、参数估计、标准误差和推理决策)。它是分块级模型结果中不确定性的来源,可以进行研究、报告和解释。如果不这样做,会引起代表性和可重复性的问题。然而,在最近的方法学文献中(Cole、Perkins 和 Zelkowitz,2016;Little、Rhemtulla、Gibson 和 Shoemann,2013;Marsh、Ludtke、Nagengast、Morin 和 von Davier,2013;Rhemtulla,2016),在没有量化或解释 PAV 的情况下,分块在几种情况下得到了合理的证明和推荐。在本文中,我们解释和展示了这些理由的问题。总的来说,我们发现:(1)对于多维结构,使用有目的的分块算法并不能避免 PAV;(2)通过对项目级模型的单维性进行检验并不一定能避免 PAV;(3)提高检测结构错误指定的能力并不需要在不解决 PAV 的情况下进行分块;我们展示了如何通过比较具有不同结构约束的项目级模型来同时避免 PAV 并获得更高的能力。最后讨论了对实践的影响。