Suppr超能文献

在测量和结构模型误设定下,SEM 分区策略的人口表现。

Population performance of SEM parceling strategies under measurement and structural model misspecification.

机构信息

University of Amsterdam.

出版信息

Psychol Methods. 2016 Sep;21(3):348-368. doi: 10.1037/met0000072. Epub 2016 Feb 1.

Abstract

Previous research has suggested that the use of item parcels in structural equation modeling can lead to biased structural coefficient estimates and low power to detect model misspecification. The present article describes the population performance of items, parcels, and scales under a range of model misspecifications, examining structural path coefficient accuracy, power, and population fit indices. Results revealed that, under measurement model misspecification, any parceling scheme typically results in more accurate structural parameters, but less power to detect the misspecification. When the structural model is misspecified, parcels do not affect parameter accuracy, but they do substantially elevate power to detect the misspecification. Under particular, known measurement model misspecifications, a parceling scheme can be chosen to produce the most accurate estimates. The root mean square error of approximation and the standardized root mean square residual are more sensitive to measurement model misspecification in parceled models than the likelihood ratio test statistic. (PsycINFO Database Record

摘要

先前的研究表明,在结构方程建模中使用项目包裹可能会导致结构系数估计值存在偏差,并且难以检测模型的不恰当指定。本文描述了在一系列模型不恰当指定下,项目、包裹和量表的总体表现,检验了结构路径系数的准确性、功效和总体拟合指数。结果表明,在测量模型不恰当指定的情况下,任何包裹方案通常会导致更准确的结构参数,但检测不恰当指定的功效较低。当结构模型不恰当指定时,包裹不会影响参数的准确性,但会极大地提高检测不恰当指定的功效。在特定的已知测量模型不恰当指定下,可以选择包裹方案来产生最准确的估计值。在包裹模型中,近似均方根误差和标准化均方根残差比似然比检验统计量对测量模型不恰当指定更为敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验