文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BreCaHAD:一个用于乳腺癌组织病理学注释与诊断的数据集。

BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis.

作者信息

Aksac Alper, Demetrick Douglas J, Ozyer Tansel, Alhajj Reda

机构信息

Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada.

Department of Pathology & Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, T2L 2K8, Canada.

出版信息

BMC Res Notes. 2019 Feb 12;12(1):82. doi: 10.1186/s13104-019-4121-7.


DOI:10.1186/s13104-019-4121-7
PMID:30755250
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6373078/
Abstract

OBJECTIVES: Histopathological tissue analysis by a pathologist determines the diagnosis and prognosis of most tumors, such as breast cancer. To estimate the aggressiveness of cancer, a pathologist evaluates the microscopic appearance of a biopsied tissue sample based on morphological features which have been correlated with patient outcome. DATA DESCRIPTION: This paper introduces a dataset of 162 breast cancer histopathology images, namely the breast cancer histopathological annotation and diagnosis dataset (BreCaHAD) which allows researchers to optimize and evaluate the usefulness of their proposed methods. The dataset includes various malignant cases. The task associated with this dataset is to automatically classify histological structures in these hematoxylin and eosin (H&E) stained images into six classes, namely mitosis, apoptosis, tumor nuclei, non-tumor nuclei, tubule, and non-tubule. By providing this dataset to the biomedical imaging community, we hope to encourage researchers in computer vision, machine learning and medical fields to contribute and develop methods/tools for automatic detection and diagnosis of cancerous regions in breast cancer histology images.

摘要

目标:病理学家进行的组织病理学分析可确定大多数肿瘤(如乳腺癌)的诊断和预后。为评估癌症的侵袭性,病理学家会根据与患者预后相关的形态学特征,评估活检组织样本的微观外观。 数据描述:本文介绍了一个包含162张乳腺癌组织病理学图像的数据集,即乳腺癌组织病理学标注与诊断数据集(BreCaHAD),该数据集可让研究人员优化并评估他们所提出方法的有效性。该数据集包括各种恶性病例。与这个数据集相关的任务是将这些苏木精和伊红(H&E)染色图像中的组织结构自动分类为六个类别,即有丝分裂、凋亡、肿瘤细胞核、非肿瘤细胞核、小管和非小管。通过向生物医学成像领域提供这个数据集,我们希望鼓励计算机视觉、机器学习和医学领域的研究人员为乳腺癌组织学图像中癌区域的自动检测和诊断贡献并开发方法/工具。

相似文献

[1]
BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis.

BMC Res Notes. 2019-2-12

[2]
Multi CNN based automatic detection of mitotic nuclei in breast histopathological images.

Comput Biol Med. 2023-5

[3]
MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.

Med Biol Eng Comput. 2020-7

[4]
DDTNet: A dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer.

Med Image Anal. 2022-5

[5]
Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer.

Sensors (Basel). 2022-7-28

[6]
A Dataset for Breast Cancer Histopathological Image Classification.

IEEE Trans Biomed Eng. 2016-7

[7]
Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.

Cytometry A. 2017-8

[8]
LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.

Int J Comput Assist Radiol Surg. 2021-9

[9]
Nuclei Segmentation on Histopathology Images of Breast Carcinoma.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[10]
CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images.

Comput Biol Med. 2021-5

引用本文的文献

[1]
Breast cancer detection based on histological images using fusion of diffusion model outputs.

Sci Rep. 2025-7-1

[2]
Histopathological domain adaptation with generative adversarial networks: Bridging the domain gap between thyroid cancer histopathology datasets.

PLoS One. 2024-12-26

[3]
Evaluating Generative Models in Medical Imaging.

Proc (IEEE Int Conf Healthc Inform). 2024-6

[4]
Histopathology in focus: a review on explainable multi-modal approaches for breast cancer diagnosis.

Front Med (Lausanne). 2024-9-30

[5]
A Systematic Comparison of Task Adaptation Techniques for Digital Histopathology.

Bioengineering (Basel). 2023-12-24

[6]
Applications of discriminative and deep learning feature extraction methods for whole slide image analysis: A survey.

J Pathol Inform. 2023-9-14

[7]
A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer.

Sci Data. 2023-4-21

[8]
PathNarratives: Data annotation for pathological human-AI collaborative diagnosis.

Front Med (Lausanne). 2023-1-26

[9]
Incorporating a Novel Dual Transfer Learning Approach for Medical Images.

Sensors (Basel). 2023-1-4

[10]
Generation of highly realistic microstructural images of alloys from limited data with a style-based generative adversarial network.

Sci Rep. 2023-1-11

本文引用的文献

[1]
Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years.

Br J Cancer. 1957-9

[2]
Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma.

Am J Clin Pathol. 1995-2

[3]
Histological grading of breast carcinomas: a study of interobserver agreement.

Hum Pathol. 1995-8

[4]
Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up.

Histopathology. 1991-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索