Suppr超能文献

基于扩散模型输出融合的组织学图像乳腺癌检测

Breast cancer detection based on histological images using fusion of diffusion model outputs.

作者信息

Akbari Younes, Abdullakutty Faseela, Al Maadeed Somaya, Bouridane Ahmed, Hamoudi Rifat

机构信息

Department of Computer Science and Engineering, Qatar University, Doha, Qatar.

Center for Data Analytics and Cybernetics, University of Sharjah, Sharjah, UAE.

出版信息

Sci Rep. 2025 Jul 1;15(1):21463. doi: 10.1038/s41598-025-05744-0.

Abstract

The precise detection of breast cancer in histopathological images remains a critical challenge in computational pathology, where accurate tissue segmentation significantly enhances diagnostic accuracy. This study introduces a novel approach leveraging a Conditional Denoising Diffusion Probabilistic Model (DDPM) to improve breast cancer detection through advanced segmentation and feature fusion. The method employs a conditional channel within the DDPM framework, first trained on a breast cancer histopathology dataset and extended to additional datasets to achieve regional-level segmentation of tumor areas and other tissue regions. These segmented regions, combined with predicted noise from the diffusion model and original images, are processed through an EfficientNet-B0 network to extract enhanced features. A transformer decoder then fuses these features to generate final detection results. Extensive experiments optimizing the network architecture and fusion strategies were conducted, and the proposed method was evaluated across four distinct datasets, achieving a peak accuracy of 92.86% on the BRACS dataset, 100% on the BreCaHAD dataset, 96.66% the ICIAR2018 dataset. This approach represents a significant advancement in computational pathology, offering a robust tool for breast cancer detection with potential applications in broader medical imaging contexts.

摘要

在计算病理学中,在组织病理学图像中精确检测乳腺癌仍然是一项关键挑战,准确的组织分割可显著提高诊断准确性。本研究引入了一种新颖的方法,利用条件去噪扩散概率模型(DDPM),通过先进的分割和特征融合来改进乳腺癌检测。该方法在DDPM框架内采用一个条件通道,首先在乳腺癌组织病理学数据集上进行训练,然后扩展到其他数据集,以实现肿瘤区域和其他组织区域的区域级分割。这些分割区域与扩散模型预测的噪声和原始图像相结合,通过EfficientNet-B0网络进行处理,以提取增强特征。然后,一个Transformer解码器融合这些特征,以生成最终检测结果。我们进行了广泛的实验来优化网络架构和融合策略,并在四个不同的数据集上对所提出的方法进行了评估,在BRACS数据集上达到了92.86%的峰值准确率,在BreCaHAD数据集上达到了100%,在ICIAR2018数据集上达到了96.66%。这种方法代表了计算病理学的一项重大进展,为乳腺癌检测提供了一个强大的工具,在更广泛的医学成像背景下具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa78/12217257/54744323ee7d/41598_2025_5744_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验