Almeida Otávio Guilherme Gonçalves de, von Zeska Kress Marcia Regina
Faculdade de Ciências Farmacêuticas de Ribeirao Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, SP, Brazil.
Microorganisms. 2024 Jul 25;12(8):1525. doi: 10.3390/microorganisms12081525.
Fungal resistance is a public health concern due to the limited availability of antifungal resources and the complexities associated with treating persistent fungal infections. Azoles are thus far the primary line of defense against fungi. Specifically, azoles inhibit the conversion of lanosterol to ergosterol, producing defective sterols and impairing fluidity in fungal plasmatic membranes. Studies on azole resistance have emphasized specific point mutations in CYP51/ERG11 proteins linked to resistance. Although very insightful, the traditional approach to studying azole resistance is time-consuming and prone to errors during meticulous alignment evaluation. It relies on a reference-based method using a specific protein sequence obtained from a wild-type (WT) phenotype. Therefore, this study introduces a machine learning (ML)-based approach utilizing molecular descriptors representing the physiochemical attributes of CYP51/ERG11 protein isoforms. This approach aims to unravel hidden patterns associated with azole resistance. The results highlight that descriptors related to amino acid composition and their combination of hydrophobicity and hydrophilicity effectively explain the slight differences between the resistant non-wild-type (NWT) and WT (nonresistant) protein sequences. This study underscores the potential of ML to unravel nuanced patterns in CYP51/ERG11 sequences, providing valuable molecular signatures that could inform future endeavors in drug development and computational screening of resistant and nonresistant fungal lineages.
由于抗真菌资源有限以及治疗持续性真菌感染的复杂性,真菌耐药性成为一个公共卫生问题。到目前为止,唑类药物是抵御真菌的主要防线。具体而言,唑类药物抑制羊毛甾醇向麦角甾醇的转化,产生有缺陷的甾醇并损害真菌质膜的流动性。关于唑类耐药性的研究强调了与耐药性相关的CYP51/ERG11蛋白中的特定点突变。尽管非常有见地,但传统的研究唑类耐药性的方法耗时且在细致的比对评估过程中容易出错。它依赖于一种基于参考的方法,使用从野生型(WT)表型获得的特定蛋白质序列。因此,本研究引入了一种基于机器学习(ML)的方法,利用代表CYP51/ERG11蛋白异构体物理化学属性的分子描述符。该方法旨在揭示与唑类耐药性相关的隐藏模式。结果表明,与氨基酸组成及其疏水性和亲水性组合相关的描述符有效地解释了耐药非野生型(NWT)和WT(非耐药)蛋白质序列之间的细微差异。本研究强调了机器学习在揭示CYP51/ERG11序列中细微模式方面的潜力,提供了有价值的分子特征,可为未来药物开发以及耐药和非耐药真菌谱系的计算筛选提供参考。