Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Genome Center of Wisconsin, Madison, WI, 53706, USA.
J Am Soc Mass Spectrom. 2019 Apr;30(4):659-668. doi: 10.1007/s13361-018-02125-y. Epub 2019 Feb 12.
Libraries of simulated lipid fragmentation spectra enable the identification of hundreds of unique lipids from complex lipid extracts, even when the corresponding lipid reference standards do not exist. Often, these in silico libraries are generated through expert annotation of spectra to extract and model fragmentation rules common to a given lipid class. Although useful for a given sample source or instrumental platform, the time-consuming nature of this approach renders it impractical for the growing array of dissociation techniques and instrument platforms. Here, we introduce Library Forge, a unique algorithm capable of deriving lipid fragment mass-to-charge (m/z) and intensity patterns directly from high-resolution experimental spectra with minimal user input. Library Forge exploits the modular construction of lipids to generate m/z transformed spectra in silico which reveal the underlying fragmentation pathways common to a given lipid class. By learning these fragmentation patterns directly from observed spectra, the algorithm increases lipid spectral matching confidence while reducing spectral library development time from days to minutes. We embed the algorithm within the preexisting lipid analysis architecture of LipiDex to integrate automated and robust library generation within a comprehensive LC-MS/MS lipidomics workflow. Graphical Abstract.
模拟脂质碎裂谱库可鉴定复杂脂质提取物中数百种独特的脂质,即使不存在相应的脂质参考标准品。通常,这些计算机模拟库是通过对谱图进行专家注释来提取和模拟给定脂质类别的常见碎裂规则而生成的。尽管对于特定的样本来源或仪器平台很有用,但这种方法耗时耗力,不适合日益增多的解离技术和仪器平台。在这里,我们介绍了 Library Forge,这是一种独特的算法,它能够在最小的用户输入下,直接从高分辨率实验谱图中提取和模拟脂质碎片质荷比 (m/z) 和强度模式。Library Forge 利用脂质的模块化结构,在计算机上生成 m/z 转换谱图,揭示给定脂质类别的共同碎裂途径。通过直接从观察到的谱图中学习这些碎裂模式,该算法提高了脂质谱图匹配的置信度,同时将谱库开发时间从几天缩短到几分钟。我们将该算法嵌入到现有的 LipiDex 脂质分析架构中,以便在全面的 LC-MS/MS 脂质组学工作流程中集成自动且稳健的谱库生成。