School of Science, Shandong Jianzhu University, Jinan 250101, China.
Key Laboratory for Information Science of Electromagnetic Waves (MoE), Key Laboratory of Micro and Nano Photonic Structures (MoE) and Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China.
Molecules. 2019 Feb 12;24(3):639. doi: 10.3390/molecules24030639.
Group IV monochalcogenides M X ( = Ge, Sn; = S, Se)-semiconductor isostructure to black phosphorene-have recently emerged as promising two-dimensional materials for ultrathin-film photovoltaic applications owing to the fascinating electronic and optical properties. Herein, using first-principles calculations, we systematically investigate the orbital contribution electronic properties, angular and strain dependence on the carrier effective masses of monolayer M X . Based on analysis on the orbital-projected band structure, the VBMs are found to be dominantly contributed from the p z orbital of atom, while the CBM is mainly dominated by p x or p y orbital of atom. 2D SnS has the largest anisotropy ratio due to the lacking of orbital contribution which increases the anisotropy. Moreover, the electron/hole effective masses along the direction have the steeper tendency of increase under the uniaxial tensile strain compared to those along direction.
IV 族单硫族化物 MX(=Ge,Sn;=S,Se)-与黑磷烯具有相似结构-作为超薄薄膜光伏应用的有前途的二维材料,由于其迷人的电子和光学特性而新近出现。在此,我们使用第一性原理计算,系统地研究了单层 MX 的轨道贡献电子性质、各向异性和载流子有效质量对应变的依赖性。基于对轨道投影能带结构的分析,发现 VBM 主要来自于原子的 p z 轨道,而 CBM 主要由原子的 p x 或 p y 轨道主导。2D SnS 具有最大的各向异性比,因为缺乏轨道贡献,从而增加了各向异性。此外,与沿 方向相比,在单轴拉伸应变下,沿 方向的电子/空穴有效质量增加的趋势更陡峭。