College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Street 16#, Xiasha, Hangzhou, 310036, People's Republic of China.
Faculty of Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
BMC Genomics. 2019 Feb 13;20(1):133. doi: 10.1186/s12864-019-5478-7.
MicroRNAs (miRNAs) constitute a well-known small RNA (sRNA) species with important regulatory roles. To date, several bioinformatics tools have been developed for large-scale prediction of miRNAs based on high-throughput sequencing data. However, some of these tools become invalid without reference genomes, while some tools cannot supply user-friendly outputs. Besides, most of the current tools focus on the importance of secondary structures and sRNA expression patterns for miRNA prediction, while they do not pay attention to miRNA processing for reliability check.
Here, we reported a pipeline PmiRDiscVali for plant miRNA discovery and partial validation. This pipeline integrated the popular tool miRDeep-P for plant miRNA prediction, making PmiRDiscVali compatible for both reference-based and de novo predictions. To check the prediction reliability, we adopted the concept that the miRNA processing intermediates could be tracked by degradome sequencing (degradome-seq) during the development of PmiRDiscVali. A case study was performed by using the public sequencing data of Dendrobium officinale, in order to show the clear and concise presentation of the prediction results.
Summarily, the integrated pipeline PmiRDiscVali, featured with degradome-seq data-based validation and vivid result presentation, should be useful for large-scale identification of plant miRNA candidates.
MicroRNAs(miRNAs)是一种已知的小 RNA(sRNA),具有重要的调控作用。迄今为止,已经开发了几种基于高通量测序数据的大规模 miRNA 预测的生物信息学工具。然而,其中一些工具在没有参考基因组的情况下变得无效,而有些工具则无法提供用户友好的输出。此外,大多数当前的工具都侧重于二级结构和 sRNA 表达模式对 miRNA 预测的重要性,而不关注 miRNA 处理以进行可靠性检查。
在这里,我们报告了一个用于植物 miRNA 发现和部分验证的流程 PmiRDiscVali。该流程集成了流行的植物 miRNA 预测工具 miRDeep-P,使 PmiRDiscVali 既兼容基于参考的预测,也兼容从头预测。为了检查预测的可靠性,我们采用了这样的概念,即在 miRNA 处理过程中,可以通过降解组测序(degradome-seq)来跟踪 miRNA 加工中间体。通过使用铁皮石斛的公共测序数据进行了案例研究,以展示预测结果的清晰简洁呈现。
总之,集成的 PmiRDiscVali 流程具有基于降解组测序数据的验证和生动的结果呈现,应该对大规模鉴定植物 miRNA 候选物有用。