Australian Prostate Cancer Research Centre, Queensland, and Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia.
BMC Bioinformatics. 2014 Aug 12;15(1):275. doi: 10.1186/1471-2105-15-275.
Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep's probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction.
We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram.
We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.miRPlant and its manual are freely available at http://www.australianprostatecentre.org/research/software/mirplant or http://sourceforge.net/projects/mirplant/.
小 RNA 测序常用于鉴定新的 miRNA,并确定其在植物中的表达水平。有一些用于动物的 miRNA 鉴定工具,如 miRDeep、miRDeep2 和 miRDeep*。miRDeep-P 是为了使用 miRDeep 的 miRNA 生物发生概率模型来鉴定植物 miRNA 而开发的,但它依赖于几个第三方工具,并且缺乏用户友好的界面。我们的 miRPlant 程序旨在预测新的植物 miRNA,同时提供一个用户友好的界面,提高预测的准确性。
我们开发了一个名为 miRPlant 的用户友好的植物 miRNA 预测工具。我们使用来自四个不同植物物种的 16 个植物 miRNA 数据集表明,与最流行的植物 miRNA 预测工具 miRDeep-P 相比,miRPlant 的准确性至少提高了 10%。此外,miRPlant 使用图形用户界面进行数据输入和输出,并用发夹图显示鉴定的 miRNA 及其所有 RNAseq 读数。
我们开发了 miRPlant,通过采用适合植物的策略来识别发夹切除区域和发夹结构过滤,将 miRDeep*扩展到各种植物物种。miRPlant 不需要任何第三方工具,如映射或 RNA 二级结构预测工具。miRPlant 也是第一个具有动态绘制 miRNA 发夹结构功能的植物 miRNA 预测工具,它可以用小读取来识别新的 miRNA。这个功能将使生物学家能够可视化新的前体 miRNA 结构和小 RNA 读取相对于发夹的位置。此外,miRPlant 可以很容易地被具有有限生物信息学技能的生物学家使用。miRPlant 及其手册可在 http://www.australianprostatecentre.org/research/software/mirplant 或 http://sourceforge.net/projects/mirplant/ 上免费获得。