Suppr超能文献

多维方法优化药物-药物相互作用警报。

Optimizing Drug-Drug Interaction Alerts Using a Multidimensional Approach.

机构信息

Pharmaceutical Sciences,

Pharmaceutical Sciences.

出版信息

Pediatrics. 2019 Mar;143(3). doi: 10.1542/peds.2017-4111. Epub 2019 Feb 13.

Abstract

OBJECTIVES

Excessive alerts are a common concern associated with clinical decision support systems that monitor drug-drug interactions (DDIs). To reduce the number of low-value interruptive DDI alerts at our hospital, we implemented an iterative, multidimensional quality improvement effort, which included an interdisciplinary advisory group, alert metrics, and measurement of perceived clinical value.

METHODS

Alert data analysis indicated that DDIs were the most common interruptive medication alert. An interdisciplinary alert advisory group was formed to provide expert advice and oversight for alert refinement and ongoing review of alert data. Alert data were categorized into drug classes and analyzed to identify DDI alerts for refinement. Refinement strategies included alert suppression and modification of alerts to be contextually aware.

RESULTS

On the basis of historical analysis of classified DDI alerts, 26 alert refinements were implemented, representing 47% of all alerts. Alert refinement efforts resulted in the following substantial decreases in the number of interruptive DDI alerts: 40% for all clinicians (22.9-14 per 100 orders) and as high as 82% for attending physicians (6.5-1.2 per 100 orders). Two patient safety events related to alert refinements were reported during the project period.

CONCLUSIONS

Our quality improvement effort refined 47% of all DDI alerts that were firing during historical analysis, significantly reduced the number of DDI alerts in a 54-week period, and established a model for sustained alert refinements.

摘要

目的

过度警报是与监测药物-药物相互作用 (DDI) 的临床决策支持系统相关的常见问题。为了减少我们医院低价值的中断性 DDI 警报数量,我们实施了一项迭代的、多维的质量改进工作,其中包括跨学科咨询小组、警报指标以及对感知临床价值的衡量。

方法

警报数据分析表明,DDI 是最常见的中断性药物警报。成立了一个跨学科的警报咨询小组,为警报细化和持续审查警报数据提供专家建议和监督。将警报数据分类为药物类别,并进行分析以确定需要细化的 DDI 警报。细化策略包括抑制警报和修改为上下文感知的警报。

结果

根据对分类 DDI 警报的历史分析,实施了 26 项警报细化,占所有警报的 47%。警报细化工作导致中断性 DDI 警报数量大幅减少:所有临床医生减少 40%(每 100 个医嘱 22.9-14 个),主治医生减少高达 82%(每 100 个医嘱 6.5-1.2 个)。在项目期间报告了与警报细化相关的两起患者安全事件。

结论

我们的质量改进工作细化了历史分析期间触发的所有 DDI 警报的 47%,显著减少了 54 周内的 DDI 警报数量,并建立了持续的警报细化模型。

相似文献

引用本文的文献

3
Seeking the Right Time for Venous Thromboembolism Prophylaxis Alerts.寻找静脉血栓栓塞预防警报的合适时机。
Brown J Hosp Med. 2022 Jul 8;1(3):36786. doi: 10.56305/001c.36786. eCollection 2022.
10
Designing and evaluating contextualized drug-drug interaction algorithms.设计和评估情境化药物相互作用算法。
JAMIA Open. 2021 Mar 19;4(1):ooab023. doi: 10.1093/jamiaopen/ooab023. eCollection 2021 Jan.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验