Suppr超能文献

与热梯度相结合的图案化表面电荷可能会在粘弹性流体的电渗中极大地增强溶质扩散。

Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids.

作者信息

Mukherjee Siddhartha, Dhar Jayabrata, DasGupta Sunando, Chakraborty Suman

机构信息

Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

出版信息

Proc Math Phys Eng Sci. 2019 Jan;475(2221):20180522. doi: 10.1098/rspa.2018.0522. Epub 2019 Jan 9.

Abstract

Augmenting the dispersion of a solute species and fluidic mixing remains a challenging proposition in electrically actuated microfluidic devices, primarily due to an inherent plug-like nature of the velocity profile under uniform surface charge conditions. While a judicious patterning of surface charges may obviate some of the concerning challenges, the consequent improvement in solute dispersion may turn out to be marginal. Here, we show that by exploiting a unique coupling of patterned surface charges with intrinsically induced thermal gradients, it may be possible to realize giant augmentations in solute dispersion in electro-osmotic flows. This is effectively mediated by the phenomena of Joule heating and surface heat dissipation, so as to induce local variations in electrical properties. Combined with the rheological premises of a viscoelastic fluid that are typically reminiscent of common biofluids handled in lab-on-a-chip-based micro-devices, our results demonstrate that the consequent electro-hydrodynamic forcing may open up favourable windows for augmented hydrodynamic dispersion, which has not yet been unveiled.

摘要

在电驱动微流控装置中,增强溶质种类的扩散和流体混合仍然是一个具有挑战性的问题,这主要是由于在均匀表面电荷条件下速度分布具有固有的类似塞状的性质。虽然对表面电荷进行明智的图案化处理可能会避免一些相关挑战,但溶质扩散的相应改善可能微乎其微。在此,我们表明,通过利用图案化表面电荷与固有诱导热梯度的独特耦合,有可能在电渗流中实现溶质扩散的巨大增强。这有效地由焦耳热和表面热耗散现象介导,从而引起电学性质的局部变化。结合粘弹性流体的流变学前提,这通常让人联想到基于芯片实验室的微型设备中处理的常见生物流体,我们的结果表明,由此产生的电流体动力学力可能为增强的流体动力学扩散打开有利的窗口,而这尚未被揭示。

相似文献

4
Artificial cilia for active micro-fluidic mixing.用于主动微流体混合的人工纤毛。
Lab Chip. 2008 Apr;8(4):533-41. doi: 10.1039/b717681c. Epub 2008 Mar 4.
5
Joule heating-induced particle manipulation on a microfluidic chip.微流控芯片上的焦耳热诱导粒子操控
Biomicrofluidics. 2019 Feb 22;13(1):014113. doi: 10.1063/1.5082978. eCollection 2019 Jan.
6
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.黏弹性流体两流型电渗流的解析解。
J Colloid Interface Sci. 2013 Apr 1;395:277-86. doi: 10.1016/j.jcis.2012.12.013. Epub 2012 Dec 22.
8
Spatially uniform microflows induced by thermoviscous expansion along a traveling temperature wave: analogies with electro-osmotic transport.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016321. doi: 10.1103/PhysRevE.86.016321. Epub 2012 Jul 26.
10
AC electro-osmotic mixing induced by non-contact external electrodes.由非接触式外部电极引起的交流电渗混合
Biosens Bioelectron. 2006 Oct 15;22(4):563-7. doi: 10.1016/j.bios.2006.05.032. Epub 2006 Jul 11.

本文引用的文献

1
Electroosmosis of Viscoelastic Fluids: Role of Wall Depletion Layer.粘弹性流体的电动渗透:壁面耗尽层的作用。
Langmuir. 2017 Oct 31;33(43):12046-12055. doi: 10.1021/acs.langmuir.7b02895. Epub 2017 Oct 10.
5
Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients.有限温度梯度存在下双电层内的电流体动力学。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):053020. doi: 10.1103/PhysRevE.88.053020. Epub 2013 Nov 26.
6
Electrokinetics of non-Newtonian fluids: a review.非牛顿流体的电动现象:综述。
Adv Colloid Interface Sci. 2013 Dec;201-202:94-108. doi: 10.1016/j.cis.2013.09.001. Epub 2013 Sep 23.
8
Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization.重新定义狭窄受限空间中的双电层厚度:溶剂极化的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051508. doi: 10.1103/PhysRevE.85.051508. Epub 2012 May 29.
10
Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):012501. doi: 10.1103/PhysRevE.84.012501. Epub 2011 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验