Jhong Huei-Ru Molly, Tornow Claire E, Kim Chaerin, Verma Sumit, Oberst Justin L, Anderson Paul S, Gewirth Andrew A, Fujigaya Tsuyohiko, Nakashima Naotoshi, Kenis Paul J A
Department of Chemistry and Chemical & Biomolecular Engineering, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
Chemphyschem. 2017 Nov 17;18(22):3274-3279. doi: 10.1002/cphc.201700815. Epub 2017 Oct 17.
Multiple approaches will be needed to reduce the atmospheric CO levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO driven by renewable energy is one approach to reduce CO emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm . The observed high activity, originating from a high electrochemically active surface area (23 m g Au), in combination with the low loading (0.17 mg cm ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO .
需要多种方法来降低大气中的一氧化碳水平,一氧化碳已与全球气候变化的不良影响相关联。由可再生能源驱动的一氧化碳电还原是一种在生产化学构件的同时减少一氧化碳排放的方法,但目前的电催化剂表现出低活性和选择性。在此,我们报告了一种用于将一氧化碳电还原为一氧化碳的有前景的催化剂的结构和电化学表征:负载在聚合物包裹的多壁碳纳米管上的金纳米颗粒。该催化剂对一氧化碳的选择性高于氢气:一氧化碳含量为80 - 92%,同时具有高活性:一氧化碳的分电流密度高达160 mA cm 。观察到的高活性源于高电化学活性表面积(23 m g Au),再加上高度分散的金纳米颗粒的低负载量(0.17 mg cm ),突出了这种催化剂用于高效电还原一氧化碳的前景。