Suppr超能文献

基于形状的从头药物设计生成模型。

Shape-Based Generative Modeling for de Novo Drug Design.

机构信息

Computational Science Laboratory , Universitat Pompeu Fabra , Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88 , 08003 Barcelona , Spain.

Acellera , Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88 , 08003 Barcelona , Spain.

出版信息

J Chem Inf Model. 2019 Mar 25;59(3):1205-1214. doi: 10.1021/acs.jcim.8b00706. Epub 2019 Feb 28.

Abstract

In this work, we propose a machine learning approach to generate novel molecules starting from a seed compound, its three-dimensional (3D) shape, and its pharmacophoric features. The pipeline draws inspiration from generative models used in image analysis and represents a first example of the de novo design of lead-like molecules guided by shape-based features. A variational autoencoder is used to perturb the 3D representation of a compound, followed by a system of convolutional and recurrent neural networks that generate a sequence of SMILES tokens. The generative design of novel scaffolds and functional groups can cover unexplored regions of chemical space that still possess lead-like properties.

摘要

在这项工作中,我们提出了一种机器学习方法,从种子化合物、其三维 (3D) 形状和药效特征出发,生成新的分子。该流水线的灵感来自于图像分析中使用的生成模型,代表了首次使用基于形状的特征引导从头设计类先导化合物的例子。变分自动编码器用于扰动化合物的 3D 表示,然后是一个卷积和递归神经网络系统,生成 SMILES 标记序列。新颖支架和功能基团的生成设计可以覆盖仍然具有类先导性质的化学空间中未探索的区域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验